Zbieżność szeregu

Definicja szeregów liczbowych, kryteria zbieżności szeregów. Suma szeregu i iloczyn Cauchy'ego szeregów. Iloczyny nieskończone.
Suomka
Użytkownik
Użytkownik
Posty: 58
Rejestracja: 11 kwie 2011, o 19:51
Płeć: Kobieta
Lokalizacja: Kraków
Podziękował: 7 razy
Pomógł: 1 raz

Zbieżność szeregu

Post autor: Suomka »

Witam, proszę o wskazówki w jaki sposób rozwiązać ten problem:

Ciąg \(\displaystyle{ (b_{n})}\) różni się od ciągu \(\displaystyle{ (a_{n})}\) skończoną ilością wyrazów. Wiadomo, że szereg \(\displaystyle{ \sum_{ \infty }^{n=1}a_{n}}\) jest zbieżny i ma sumę s. Czy szereg \(\displaystyle{ \sum_{ \infty }^{n=1}b_{n}}\) jest zbieżny? Jeśli tak, to jaka jest jego suma?
Awatar użytkownika
Medea 2
Użytkownik
Użytkownik
Posty: 2489
Rejestracja: 30 lis 2014, o 11:03
Płeć: Kobieta
Podziękował: 23 razy
Pomógł: 479 razy

Zbieżność szeregu

Post autor: Medea 2 »

Skorzystaj z takiego kryterium: szereg \(\displaystyle{ \sum_n a_n}\) jest zbieżny dokładnie wtedy, gdy jest zbieżna każda z jego reszt, tzn. \(\displaystyle{ \sum_{n \ge k} a_n}\).
ODPOWIEDZ