Obliczając odpowiednią granicę pokaż...

Wyznaczanie granic funkcji. Ciągłość w punkcie i ciągłość jednostajna na przedziale. Reguła de l'Hospitala.
turbowarkocz
Użytkownik
Użytkownik
Posty: 11
Rejestracja: 5 mar 2012, o 17:32
Płeć: Mężczyzna
Lokalizacja: dolnośląskie

Obliczając odpowiednią granicę pokaż...

Post autor: turbowarkocz »

Witam, na liście zadań dla mojego kursu analizy matematycznej jest takie zadanie (przepiszę je a pod spodem załączę link):

Obliczając odpowiednią granicę pokaż, że dla \(\displaystyle{ a > 0 \sqrt{a^{2} + r} \approx a + r/2a}\). Korzystając z tego wzoru pokaż, że:
a) \(\displaystyle{ \sqrt{10} = 19/6}\)
b) \(\displaystyle{ \sqrt{15} = 31/8}\)
c) \(\displaystyle{ \sqrt{2} = 99/70}\)

Kod: Zaznacz cały

http://prac.im.pwr.wroc.pl/~zakrzews/analiza_7tygodni.pdf


Oczywiście najbardziej interesuje mnie pierwsza część polecenia, z którą nie mogę sobie poradzić.
Ostatnio zmieniony 25 paź 2013, o 09:33 przez turbowarkocz, łącznie zmieniany 1 raz.
Adifek
Użytkownik
Użytkownik
Posty: 1560
Rejestracja: 15 gru 2008, o 16:38
Płeć: Mężczyzna
Lokalizacja: Ostrzeszów/Wrocław
Podziękował: 8 razy
Pomógł: 398 razy

Obliczając odpowiednią granicę pokaż...

Post autor: Adifek »

Pokaż, że

\(\displaystyle{ \lim_{r\to 0} \frac{\sqrt{a^2+r}}{a + r\slash 2a} =1}\).


I nastepnym razem poprawnie przepisz polecenie

PS. I pozdrów dra Zakrzewskiego od pierwszego roku magisterki
Ostatnio zmieniony 25 paź 2013, o 00:33 przez Adifek, łącznie zmieniany 1 raz.
Awatar użytkownika
cosinus90
Użytkownik
Użytkownik
Posty: 5027
Rejestracja: 18 cze 2010, o 18:34
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 5 razy
Pomógł: 777 razy

Obliczając odpowiednią granicę pokaż...

Post autor: cosinus90 »

Dorzucę tylko, że turbowarkocz źle przepisał wzór. \(\displaystyle{ a+r}\) nie jest w liczniku, tylko samo \(\displaystyle{ r}\).
turbowarkocz
Użytkownik
Użytkownik
Posty: 11
Rejestracja: 5 mar 2012, o 17:32
Płeć: Mężczyzna
Lokalizacja: dolnośląskie

Obliczając odpowiednią granicę pokaż...

Post autor: turbowarkocz »

Faktycznie, problem polegał na tym, że źle interpretowałem wzór. Teraz wszystko śmiga, dzięki wielkie!
Awatar użytkownika
yorgin
Użytkownik
Użytkownik
Posty: 12680
Rejestracja: 14 paź 2006, o 12:09
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 17 razy
Pomógł: 3440 razy

Obliczając odpowiednią granicę pokaż...

Post autor: yorgin »

turbowarkocz pisze:Korzystając z tego wzoru pokaż, że:
a) \(\displaystyle{ \sqrt{10} = 19/6}\)
b) \(\displaystyle{ \sqrt{15} = 31/8}\)
c) \(\displaystyle{ \sqrt{2} = 99/70}\)
No raczej równość tutaj nie ma racji, gdyż chodzi o przybliżenie wartości. Sam wzór, którego używasz, podaje tylko przybliżenie, co wyraźnie zaznaczasz pisząc \(\displaystyle{ \approx}\). Jeżeli tak jak zacytowałem jest napisane gdziekolwiek, to raczej nie jest to poprawnie sformułowana treść zadania.
ODPOWIEDZ