Granica ciągu

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
Aragenix
Użytkownik
Użytkownik
Posty: 50
Rejestracja: 8 gru 2012, o 13:49
Płeć: Mężczyzna
Lokalizacja: Łódź
Podziękował: 31 razy

Granica ciągu

Post autor: Aragenix »

Jest to zadanie 24 z "310 przykładów granic z pełnymi rozwiązaniami krok po kroku"

\(\displaystyle{ \lim_{ n \to \infty } \frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \frac{7}{3^2 \cdot 4^2} + \ldots + \frac{2n-1}{n^2 \cdot (n+1)^2}}\) i to jest równe \(\displaystyle{ \lim_{ n \to \infty } \left[ \left( 1 - \frac{1}{4} \right) + \left( \frac{1}{4} - \frac{1}{9} \right) + \left( \frac{1}{9} - \frac{1}{16} \right) + \ldots + + \left( \frac{1}{n^2} - \frac{1}{(n+1)^2} \right) \right]}\)

Czy mógłby mi ktoś napisać jakim sposobem z pierwszego równania zrobiło się drugie?
Awatar użytkownika
bryk
Użytkownik
Użytkownik
Posty: 41
Rejestracja: 16 paź 2009, o 22:38
Płeć: Mężczyzna
Lokalizacja: Trójmiasto
Podziękował: 1 raz
Pomógł: 3 razy

Granica ciągu

Post autor: bryk »

\(\displaystyle{ \frac{2n+1}{n^2\cdot(n+1)^{2}} = \frac{2n+1+n^{2}-n^{2}}{n^2\cdot(n+1)^{2}} = \frac{(n+1)^{2}}{n^2\cdot(n+1)^{2}} - \frac{n^{2}}{n^2\cdot(n+1)^{2}} = \frac{1}{n^{2}}- \frac{1}{(n+1)^{2}}}\)
ODPOWIEDZ