Mam do rozwiązania następującą nierówność:
\(\displaystyle{ 9 -\left| 2x - 5\right| > \left| x-1\right|}\)
wyznaczyłem odpowiednie przedziały na osi:
\(\displaystyle{ (- \infty ;1) ; <1; 2,5) ; <2,5; + \infty )}\)
1. przypadek:
\(\displaystyle{ 9-(5-2x) > -x+1}\)
\(\displaystyle{ 9-5+2x>-x+1}\)
\(\displaystyle{ 3>-3x /: (-3)}\)
\(\displaystyle{ x> -1}\)
2. przypadek:
\(\displaystyle{ 9-(5-2x) > x-1}\)
\(\displaystyle{ 9-5+2x>x-1}\)
\(\displaystyle{ x>-5}\)
3. przypadek:
\(\displaystyle{ 9-2x-5 > x-1}\)
\(\displaystyle{ -3x>-5}\)
\(\displaystyle{ x< \frac{5}{3}}\)
I tu się zatrzymałem. W odpowiedziach jest: \(\displaystyle{ x \in (-1;5)}\)
Nie wiem gdzie robię błąd.
nierówność z wartością bezwzględną
- VGkrzysiek
- Użytkownik

- Posty: 55
- Rejestracja: 25 paź 2012, o 13:27
- Płeć: Mężczyzna
- Lokalizacja: Kłodzko
- Podziękował: 3 razy
-
Josselyn
- Użytkownik

- Posty: 31
- Rejestracja: 21 gru 2009, o 18:32
- Płeć: Kobieta
- Lokalizacja: Lublin
- Pomógł: 4 razy
nierówność z wartością bezwzględną
III przypadek
powinno być
\(\displaystyle{ 9-2x+5>x-1\\
14-2x>x-1\\
-3x>-15\\
x<5}\)
powinno być
\(\displaystyle{ 9-2x+5>x-1\\
14-2x>x-1\\
-3x>-15\\
x<5}\)
- VGkrzysiek
- Użytkownik

- Posty: 55
- Rejestracja: 25 paź 2012, o 13:27
- Płeć: Mężczyzna
- Lokalizacja: Kłodzko
- Podziękował: 3 razy