Nazwać i narysować powierzchnię

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
kakashi
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 2 paź 2007, o 21:55
Płeć: Mężczyzna
Lokalizacja: Olsztyn
Podziękował: 2 razy

Nazwać i narysować powierzchnię

Post autor: kakashi »

Witam.
czy ktoś byłby tak miły i mógł mi rozwiązać to zadanie?
"Nazwać i narysować powierzchnię \(\displaystyle{ z=1+\sqrt{ x^{2} + y^{2} }}\) "
Z góry dziękuje.
pozdrawiam
Ostatnio zmieniony 16 maja 2012, o 21:30 przez MichalPWr, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości. Zapis LaTeX stosujemy do wszystkich wyrażeń matematycznych.
Awatar użytkownika
MichalPWr
Użytkownik
Użytkownik
Posty: 1618
Rejestracja: 29 wrz 2010, o 15:55
Płeć: Mężczyzna
Lokalizacja: Leszno
Podziękował: 7 razy
Pomógł: 387 razy

Nazwać i narysować powierzchnię

Post autor: MichalPWr »

kakashi
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 2 paź 2007, o 21:55
Płeć: Mężczyzna
Lokalizacja: Olsztyn
Podziękował: 2 razy

Nazwać i narysować powierzchnię

Post autor: kakashi »

a jakieś obliczenia? ; )
Awatar użytkownika
MichalPWr
Użytkownik
Użytkownik
Posty: 1618
Rejestracja: 29 wrz 2010, o 15:55
Płeć: Mężczyzna
Lokalizacja: Leszno
Podziękował: 7 razy
Pomógł: 387 razy

Nazwać i narysować powierzchnię

Post autor: MichalPWr »

A co tu liczyć? Jakie jest polecenie?
kakashi
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 2 paź 2007, o 21:55
Płeć: Mężczyzna
Lokalizacja: Olsztyn
Podziękował: 2 razy

Nazwać i narysować powierzchnię

Post autor: kakashi »

Ale trzeba podac wszystkie obliczenia jak się do tego doszło
miodzio1988

Nazwać i narysować powierzchnię

Post autor: miodzio1988 »

Nazwać i narysować powierzchnię
serio?
Awatar użytkownika
MichalPWr
Użytkownik
Użytkownik
Posty: 1618
Rejestracja: 29 wrz 2010, o 15:55
Płeć: Mężczyzna
Lokalizacja: Leszno
Podziękował: 7 razy
Pomógł: 387 razy

Nazwać i narysować powierzchnię

Post autor: MichalPWr »

Przyjmij sobie na sztywno za \(\displaystyle{ x=0}\). W efekcie dostaniesz coś takiego \(\displaystyle{ z=1+\left| x\right|}\), Potem robisz ten sam manewr z \(\displaystyle{ y}\). Na końcu łączysz ze sobą linie "pierścieniami". Musi Ci wyjść to samo co u mnie na wykresie.
ODPOWIEDZ