zbadaj liczbę rozwiązań
-
pjetagoras
- Użytkownik

- Posty: 28
- Rejestracja: 16 lis 2010, o 17:41
- Płeć: Mężczyzna
- Lokalizacja: Biała Podlaska
- Podziękował: 2 razy
zbadaj liczbę rozwiązań
\(\displaystyle{ 2^{x} \left( x ^{2}-1 \right) = -1}\)
rysuję wykresy lewej i prawej strony (po przekształceniu, tj. dzielę obie strony przez \(\displaystyle{ 2 ^{x}}\)) zawsze wychodzi mi, że jest tylko jedno rozwiązanie (z wykresu), w odpowiedziach są dwa rozwiązania, może mi ktoś wytłumaczyć co robię źle?
rysuję wykresy lewej i prawej strony (po przekształceniu, tj. dzielę obie strony przez \(\displaystyle{ 2 ^{x}}\)) zawsze wychodzi mi, że jest tylko jedno rozwiązanie (z wykresu), w odpowiedziach są dwa rozwiązania, może mi ktoś wytłumaczyć co robię źle?
-
pjetagoras
- Użytkownik

- Posty: 28
- Rejestracja: 16 lis 2010, o 17:41
- Płeć: Mężczyzna
- Lokalizacja: Biała Podlaska
- Podziękował: 2 razy
zbadaj liczbę rozwiązań
problem w tym, że nie potrafię narysować wykresu funkcji \(\displaystyle{ \frac{-1}{ x^{2}-1 }}\) gdyż nie mieliśmy nigdy takich funkcji wymiernych, nasz program kończy się jedynie na prostych tj. homograficznych, jak zrobić to inaczej?
-
pjetagoras
- Użytkownik

- Posty: 28
- Rejestracja: 16 lis 2010, o 17:41
- Płeć: Mężczyzna
- Lokalizacja: Biała Podlaska
- Podziękował: 2 razy
zbadaj liczbę rozwiązań
nie rozumiem, mnie uczono, że rozwiązanie będzie tam gdzie te dwie funkcje na wykresie się przetną a jest tylko jeden taki punkt, o co chodzi z tym "nieładne"?
-
piasek101
- Użytkownik

- Posty: 23517
- Rejestracja: 8 kwie 2008, o 22:04
- Płeć: Mężczyzna
- Lokalizacja: piaski
- Podziękował: 1 raz
- Pomógł: 3271 razy
zbadaj liczbę rozwiązań
Są dwa punkty przecięcia.
Nieładny - bo na wykresie widoczne - a co do wyznaczenia (obliczenia) wietrzę kłopoty - chociaż na razie nie próbowałem.
Nieładny - bo na wykresie widoczne - a co do wyznaczenia (obliczenia) wietrzę kłopoty - chociaż na razie nie próbowałem.
-
pjetagoras
- Użytkownik

- Posty: 28
- Rejestracja: 16 lis 2010, o 17:41
- Płeć: Mężczyzna
- Lokalizacja: Biała Podlaska
- Podziękował: 2 razy
zbadaj liczbę rozwiązań
jak dwa punkty przecięcia?? jest tylko jeden, parabola ma ramiona do góry, a krzywa wykładnicza leży w III i IV ćwiartce, jedynie punkt \(\displaystyle{ \left\{ 0,1\right\}}\) jest punktem wspólnym
