Oblicz wartosc oczekiwana zmiennej losowej
Zmienna losowa ciagla ma gestosc przedstawioną na rysunku (opisałem ten rysunek)
\(\displaystyle{ F(x)=\begin{cases}
0, x<-1 \wedge x \geqslant 1
\\0.5, -1 \leqslant x< 0
\\|x-1|, 0 \leqslant x < 1
\end{cases}}\)
Taka jest treść zadania, ale w sumie tą wartość bezwzględna można zamienić na:
\(\displaystyle{ -x+1, 0 \leqslant x < 1}\)
Ale nadal nie wiem jak się do tego zabrać, proszę o jakieś sugestie.
wartosc oczekiwana zmiennej losowej
wartosc oczekiwana zmiennej losowej
ta zmienna losowa jest opisana na rysunku, ale nie przerysowałem go tylko opisałem.
Jak to rozwiązać?
Jak to rozwiązać?
-
szw1710
wartosc oczekiwana zmiennej losowej
To nie jest zmienna losowa niezależnie od tego, czy zrobisz rysunek, czy nie. Ja umiem sobie wyobrazić, jak wygląda wykres funkcji \(\displaystyle{ F}\). Jednak ta funkcja nie jest zmienną losową,.
OK. Widzę, że poprawiłeś. \(\displaystyle{ F}\) jest funkcją gęstości. Sprawdź warunki na gestość (nieujemność, calka po całej prostej wynosi 1). Teraz wartość oczekiwaną zmiennej losowej o gęstości \(\displaystyle{ F}\) wyliczamy według wzoru
\(\displaystyle{ EX=\int_{-\infty}^{+\infty}xF(x)\,\text{d}x\,.}\)
W naszym przypadku mamy oczywiście \(\displaystyle{ EX=\int_{-1}^1 xF(x)\,\text{d}x\,.}\)
Rozdziel to na dwie całki tak jak definicja \(\displaystyle{ F}\).
Odp. \(\displaystyle{ EX=-\frac{1}{12}\,.}\)
OK. Widzę, że poprawiłeś. \(\displaystyle{ F}\) jest funkcją gęstości. Sprawdź warunki na gestość (nieujemność, calka po całej prostej wynosi 1). Teraz wartość oczekiwaną zmiennej losowej o gęstości \(\displaystyle{ F}\) wyliczamy według wzoru
\(\displaystyle{ EX=\int_{-\infty}^{+\infty}xF(x)\,\text{d}x\,.}\)
W naszym przypadku mamy oczywiście \(\displaystyle{ EX=\int_{-1}^1 xF(x)\,\text{d}x\,.}\)
Rozdziel to na dwie całki tak jak definicja \(\displaystyle{ F}\).
Odp. \(\displaystyle{ EX=-\frac{1}{12}\,.}\)
Ostatnio zmieniony 6 sty 2012, o 15:55 przez szw1710, łącznie zmieniany 1 raz.
wartosc oczekiwana zmiennej losowej
ok, wielkie dzięki, "Rozdziel to na dwie całki tak jak definicja F." to rozumiem że sumujemy pózniej te dwie całki?
