Prosiłbym o jakąś wskazówkę:
\(\displaystyle{ 1-log_5 \left( {5 ^{x} -1}\right) \ge x}\)
Sprowadzam do takiej postaci i nie wiem co dalej:
\(\displaystyle{ log_5\left({ \frac{5}{5 ^{x}-1 } }\right) \ge x}\)
Z góry dziękuję za pomoc i pozdrawiam.
Rozwiąż równanie.
-
Rohamos
- Użytkownik

- Posty: 53
- Rejestracja: 7 sty 2007, o 23:10
- Płeć: Mężczyzna
- Lokalizacja: Łódź
- Podziękował: 4 razy
- Pomógł: 3 razy
Rozwiąż równanie.
No ok. Więc mam:
\(\displaystyle{ \frac{5}{ 5^{x}-1 } \ge 5^{x}}\)
Mogę pomnożyć przez mianownik, gdyż musi on być większy od zera
wychodzi
\(\displaystyle{ 5^{2x} - 5^{x} -5 \le 0}\)
podstawiam \(\displaystyle{ t= 5^{x}}\)
i wychodzi delta = 21
\(\displaystyle{ t1 = \frac{1 - \sqrt{21} }{2}}\)
\(\displaystyle{ t2= \frac{1 + \sqrt{21} }{2}}\)
Odpowiedź jest inna, gdzie robię błąd ?
\(\displaystyle{ \frac{5}{ 5^{x}-1 } \ge 5^{x}}\)
Mogę pomnożyć przez mianownik, gdyż musi on być większy od zera
wychodzi
\(\displaystyle{ 5^{2x} - 5^{x} -5 \le 0}\)
podstawiam \(\displaystyle{ t= 5^{x}}\)
i wychodzi delta = 21
\(\displaystyle{ t1 = \frac{1 - \sqrt{21} }{2}}\)
\(\displaystyle{ t2= \frac{1 + \sqrt{21} }{2}}\)
Odpowiedź jest inna, gdzie robię błąd ?
- Nakahed90
- Użytkownik

- Posty: 8887
- Rejestracja: 11 paź 2008, o 22:29
- Płeć: Mężczyzna
- Lokalizacja: Łódź
- Pomógł: 1871 razy
Rozwiąż równanie.
Mnie wyszły takie same wyniki. Sprawdź czy dobrze przepisałeś i jakbyś mógł zamieść wyniki z książki.
-
Rohamos
- Użytkownik

- Posty: 53
- Rejestracja: 7 sty 2007, o 23:10
- Płeć: Mężczyzna
- Lokalizacja: Łódź
- Podziękował: 4 razy
- Pomógł: 3 razy
Rozwiąż równanie.
\(\displaystyle{ x \in (log_5{4};1>}\)
No i oczywiście założenie:
\(\displaystyle{ 5^{x}>5 ^{0} \rightarrow x>0}\)-- 25 marca 2009, 10:38 --Faktycznie, pomyłka, powinno być:
\(\displaystyle{ 1-log_5 \left( {5 ^{x} -4} \right) \ge x}\)
Założenie wychodzi dobre wtedy: \(\displaystyle{ x>log_4{5} \wedge x \le 1}\)
No i oczywiście założenie:
\(\displaystyle{ 5^{x}>5 ^{0} \rightarrow x>0}\)-- 25 marca 2009, 10:38 --Faktycznie, pomyłka, powinno być:
\(\displaystyle{ 1-log_5 \left( {5 ^{x} -4} \right) \ge x}\)
Założenie wychodzi dobre wtedy: \(\displaystyle{ x>log_4{5} \wedge x \le 1}\)
- Nakahed90
- Użytkownik

- Posty: 8887
- Rejestracja: 11 paź 2008, o 22:29
- Płeć: Mężczyzna
- Lokalizacja: Łódź
- Pomógł: 1871 razy
Rozwiąż równanie.
W książce jest błąd, nawet podstawiając skrajne wartości do nierówności nie otrzymujemy równości.
edit: no to teraz jest OK
edit: no to teraz jest OK