izomorfizm ciał
- max
- Użytkownik

- Posty: 3242
- Rejestracja: 10 gru 2005, o 17:48
- Płeć: Mężczyzna
- Lokalizacja: Lebendigentanz
- Podziękował: 37 razy
- Pomógł: 778 razy
izomorfizm ciał
Nie są.
Izomorfizm musiałby być identycznością na \(\displaystyle{ \mathbb{Q}}\) (bo przeprowadza \(\displaystyle{ 1}\) na \(\displaystyle{ 1}\)), obkładając równość \(\displaystyle{ \sqrt{2}^{2} = 2}\) stronami przez ten izomorfizm dostalibyśmy \(\displaystyle{ x^{2} = 2}\), dla pewnego \(\displaystyle{ x \mathbb{Q}(\sqrt{5})}\).
Ponieważ każdy element ciała \(\displaystyle{ \mathbb{Q}(\sqrt{5})}\) ma jednoznaczne przedstawienie postaci \(\displaystyle{ q_{1} + q_{2}\sqrt{5}, \ q_{1},q_{2}\in \mathbb{Q}}\) to mamy
\(\displaystyle{ (q_{1} + q_{2}\sqrt{5})^{2} = 2}\), dla pewnych \(\displaystyle{ q_{1},q_{2}\in \mathbb{Q}}\)
czyli:
\(\displaystyle{ q_{1}^{2} + 5q_{2}^{2} - 2 = 2q_{1}q_{2}\sqrt{5}}\)
i jeśli \(\displaystyle{ q_{1} = 0}\), to \(\displaystyle{ 5q_{2}^{2} - 2 = 0}\) -sprzeczność (2 nie jest podzielne przez 5), jeśli \(\displaystyle{ q_{2} = 0}\), to \(\displaystyle{ q_{1}^{2} - 2 = 0}\) - sprzeczność (4 nie dzieli 2), a jeśli \(\displaystyle{ q_{1}\neq 0 q_{2}}\), to \(\displaystyle{ \sqrt{5} = \frac{q_{1}^{2} + 5q_{2}^{2} - 2}{2q_{1}q_{2}}\in \mathbb{Q}}\) - sprzeczność.
Izomorfizm musiałby być identycznością na \(\displaystyle{ \mathbb{Q}}\) (bo przeprowadza \(\displaystyle{ 1}\) na \(\displaystyle{ 1}\)), obkładając równość \(\displaystyle{ \sqrt{2}^{2} = 2}\) stronami przez ten izomorfizm dostalibyśmy \(\displaystyle{ x^{2} = 2}\), dla pewnego \(\displaystyle{ x \mathbb{Q}(\sqrt{5})}\).
Ponieważ każdy element ciała \(\displaystyle{ \mathbb{Q}(\sqrt{5})}\) ma jednoznaczne przedstawienie postaci \(\displaystyle{ q_{1} + q_{2}\sqrt{5}, \ q_{1},q_{2}\in \mathbb{Q}}\) to mamy
\(\displaystyle{ (q_{1} + q_{2}\sqrt{5})^{2} = 2}\), dla pewnych \(\displaystyle{ q_{1},q_{2}\in \mathbb{Q}}\)
czyli:
\(\displaystyle{ q_{1}^{2} + 5q_{2}^{2} - 2 = 2q_{1}q_{2}\sqrt{5}}\)
i jeśli \(\displaystyle{ q_{1} = 0}\), to \(\displaystyle{ 5q_{2}^{2} - 2 = 0}\) -sprzeczność (2 nie jest podzielne przez 5), jeśli \(\displaystyle{ q_{2} = 0}\), to \(\displaystyle{ q_{1}^{2} - 2 = 0}\) - sprzeczność (4 nie dzieli 2), a jeśli \(\displaystyle{ q_{1}\neq 0 q_{2}}\), to \(\displaystyle{ \sqrt{5} = \frac{q_{1}^{2} + 5q_{2}^{2} - 2}{2q_{1}q_{2}}\in \mathbb{Q}}\) - sprzeczność.
