Witam!
Jak rozwiązać tą nierówność? Jeżeli możecie mi pomóc to dzięki!!
\(\displaystyle{ (x^2 -1)^4 - 2(x^2 -1)^2 - 8 q 0}\)
pozdrawiam
[Edit: olazola] Wyrażenia matematyczne zapisuj w \(\displaystyle{ \TeX^'u}\)
Co w tej nierówności jest takiego trudnego?
-
tomek09876
- Użytkownik

- Posty: 43
- Rejestracja: 1 lis 2004, o 18:26
- Pomógł: 2 razy
Co w tej nierówności jest takiego trudnego?
po co sie meczyc rownanie dwukwadratowe, a potem jeszcze kwadratowe
-
Sz3ota
- Użytkownik

- Posty: 7
- Rejestracja: 23 cze 2005, o 10:36
- Płeć: Mężczyzna
- Lokalizacja: Małopolska
- Podziękował: 3 razy
Co w tej nierówności jest takiego trudnego?
a czy mógłby mi to ktoś rozwiązać?
byłbym bardzo wdzięczny...
byłbym bardzo wdzięczny...
- dem
- Użytkownik

- Posty: 518
- Rejestracja: 5 sty 2005, o 21:02
- Płeć: Mężczyzna
- Lokalizacja: Rzeszów
- Pomógł: 17 razy
Co w tej nierówności jest takiego trudnego?
za \(\displaystyle{ (x-1)^{2}}\) podstawiasz zmienna t otrzymasz postać:
\(\displaystyle{ t^2-2t-8\leq 0}\)
pierwiastki:
\(\displaystyle{ t_1=4}\)
\(\displaystyle{ t_2=-2}\)
dlaej chyba już dasz rade.
\(\displaystyle{ t^2-2t-8\leq 0}\)
pierwiastki:
\(\displaystyle{ t_1=4}\)
\(\displaystyle{ t_2=-2}\)
dlaej chyba już dasz rade.
-
Sz3ota
- Użytkownik

- Posty: 7
- Rejestracja: 23 cze 2005, o 10:36
- Płeć: Mężczyzna
- Lokalizacja: Małopolska
- Podziękował: 3 razy
Co w tej nierówności jest takiego trudnego?
a dlaczego tak? z jakiego twierdzenia bądź prawa tutaj korzystasz?
dzięki
dzięki
Co w tej nierówności jest takiego trudnego?
Z żadnego
Po prostu dla ułatwienia obiczeń podstawiasz zmienną pomocniczą.
Po prostu dla ułatwienia obiczeń podstawiasz zmienną pomocniczą.
- dem
- Użytkownik

- Posty: 518
- Rejestracja: 5 sty 2005, o 21:02
- Płeć: Mężczyzna
- Lokalizacja: Rzeszów
- Pomógł: 17 razy
Co w tej nierówności jest takiego trudnego?
https://matematyka.pl/viewtopic.php?t=3841
Polecam sie zapoznać jak rozwiązywać równiania bikwadratowe.
pozdrawiam.
Polecam sie zapoznać jak rozwiązywać równiania bikwadratowe.
pozdrawiam.

