Szereg Taylora - wątpliwości

Istnienie i ciągłość funkcji granicznej, jednostajna zbieżność. Zmiana kolejności przejścia granicznego. Różniczkowanie i całkowanie szeregów. Istnienie i zbieżność rozwinięć Taylora, Maclaurina, Fouriera itd.
CheGitarra
Użytkownik
Użytkownik
Posty: 62
Rejestracja: 16 paź 2006, o 13:45
Płeć: Mężczyzna
Lokalizacja: Z planety IRK
Podziękował: 10 razy
Pomógł: 6 razy

Szereg Taylora - wątpliwości

Post autor: CheGitarra »

Dobry!

Więęęc... mam f-cję \(\displaystyle{ \frac{z}{1-z}}\) rozwinąć w szereg Taylora wokół punktu \(\displaystyle{ z_{0} = -1}\)

Czytam więc sobie przykład... a w przykładzie stoi:
"
\(\displaystyle{ \frac{1}{1-z} = \frac{1}{2-(z+1)} = \frac{1}{2} * \frac{1}{1-(\frac{z+1}{2})}}\)

Więc dla |z+1| < 2

\(\displaystyle{ \frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{(z+1)^{n}}{2^{n+1}}}\)

Ponieważ

\(\displaystyle{ \frac{z}{1-z} = \frac{1}{1-z} - 1}\)

zatem

\(\displaystyle{ \frac{z}{1-z} = - \frac{1}{2} + \sum_{n=1}^{\infty} \frac{(z+1)^{n}}{2^{n+1}} \qquad \qquad \qquad (|z+1|) a teraz moje wątpliwości...

W pierwszym wyrażeniu chcemy uzyskać postać \(\displaystyle{ z - ( - z_{0})}\) bo wiemy, jak ją rozwinąć (z+1 idzie do licznika i dostaje potęgę n a 2 do mianownika i potęgę n+1)

W trzecim rozbijamy ten ułamek żeby dostać ułamek i znanym rozwinięciu i jeden.

W czwartym (ostatnim) wyrażeniu przekształcamy... i tego właśnie nie rozumiem. Co się stało z 1/2 stojącą przed \(\displaystyle{ \frac{1}{1-(\frac{z+1}{2})}}\)? Wzięła sobie i zniknęła? Nie trzeba mnożyć sumy z wyrażenia 2-giego przez 1/2?
Skąd się wzięła -1/2 w ostatnim wyrażeniu? Widzę, że w 2-giej sumie sumujemy od 1 do niesk. gdy w pierwszej sumowaliśmy od 0 znaczy to, że wyciągnęliśmy pierwszy wyraz przed sumę... tak? A jak obliczyć dowolny wyraz tego szeregu - tzn jaki z podstawić, żeby go obliczyć?}\)
bondyros
Użytkownik
Użytkownik
Posty: 15
Rejestracja: 22 cze 2007, o 21:19
Płeć: Mężczyzna
Lokalizacja: Danzig
Pomógł: 4 razy

Szereg Taylora - wątpliwości

Post autor: bondyros »

co do pytania na pierwsza 1/2 ---- pytanie pomocniczne --- jak wyglada wzor na rozwiniecie w szereg taylora wyrazenia 1/(1-z) ?? ja sam nie pamietam, ale to chyba byl szereg z^n -- teraz Twoje z wynosi (z+1)/2 --- a popatrz jaka potega jest 2 w tym szeregu co masz

co do pytania o druga 1/2 --- -1/2 = -1 + 1/2 (ta 1/2 powstaje z pierwsze wyrazu sumy --sam zauwazyles ze sumuje sie od 1 a nie od 0 )
CheGitarra
Użytkownik
Użytkownik
Posty: 62
Rejestracja: 16 paź 2006, o 13:45
Płeć: Mężczyzna
Lokalizacja: Z planety IRK
Podziękował: 10 razy
Pomógł: 6 razy

Szereg Taylora - wątpliwości

Post autor: CheGitarra »

Eee, no i gra gitarra

Senkju
ODPOWIEDZ