Zadania z egzaminu wstępnego do lo III Wrocław

Dla poszukujących jak najlepszego liceum.
Awatar użytkownika
SkitsVicious
Użytkownik
Użytkownik
Posty: 21
Rejestracja: 23 sty 2018, o 10:42
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 4 razy

Zadania z egzaminu wstępnego do lo III Wrocław

Post autor: SkitsVicious » 14 maja 2018, o 17:38

Moglibyście zweryfikować odpowiedzi z egzaminu wstępnego do Wrocławskiego lo nr. III?
Zad 1)Dane jest \(\displaystyle{ n=2 ^{12}}\), która z tych liczb jest większa? \(\displaystyle{ 2 ^{n}}\), czy \(\displaystyle{ n^{1000}}\)
Zad 2) Czy istnieje taka liczba naturalna \(\displaystyle{ n}\), że \(\displaystyle{ n ^{2}+1}\) jest podzielne przez 3?
Zad 3) W trójkącie równobocznym \(\displaystyle{ ABC}\) o boku \(\displaystyle{ 8}\) na boku \(\displaystyle{ AB}\) wyznaczono taki punkt \(\displaystyle{ D}\), że \(\displaystyle{ \left| AD\right|= 3}\). Ile wynosi długość odcinka \(\displaystyle{ CD}\).
Zad 4) Wyznacz resztę z dzielenia liczby \(\displaystyle{ 1234567891011....9899}\) przez \(\displaystyle{ 9}\).
Zad 5) Znajdź wszystkie możliwe dwójki \(\displaystyle{ x}\) i \(\displaystyle{ y}\) spełniających układ równań
\(\displaystyle{ \begin{cases} x ^{5}=2y \\ y ^{3}= 16x \end{cases}}\)
Zad 6)Wykaż, że liczba \(\displaystyle{ \frac{1}{ \frac{1}{4+ \sqrt{26} } + \frac{1}{6+ \sqrt{26} } }}\) jest wymierna.
Zad 7) Dany jest czworokąt wypukły \(\displaystyle{ ABCD}\), gdzie \(\displaystyle{ AB=CD=4}\) i \(\displaystyle{ AD=BC=3}\) oraz długość przekątnej \(\displaystyle{ DB}\) jest równa \(\displaystyle{ 5}\). Ile wynosi długość przekątnej \(\displaystyle{ CA}\)?

To moje odpowiedzi:
Zad 1) \(\displaystyle{ n ^{1000}=\left( 2 ^{12} \right) ^{1000}=2 ^{12000}}\)
\(\displaystyle{ 2 ^{n}= 2 ^{2 ^{12} } = 2 ^{4096} \Rightarrow n ^{1000}>2 ^{n}}\)
Zad 2) Możliwe reszty z dzielenia \(\displaystyle{ n}\) przez \(\displaystyle{ 3}\) to \(\displaystyle{ 0,1,2}\), więc mamy:
\(\displaystyle{ n \equiv 0 \pmod{3} \\ n \equiv1 \pmod{3} \\ n \equiv 2 \pmod{3}}\)
więc
\(\displaystyle{ n ^{2} \equiv 0 \pmod{3}\\ n^{2} \equiv 1 \pmod{3} \\ n^{2} \equiv 4 \pmod{3}}\)
więc
\(\displaystyle{ n ^{2}+1 \equiv 1 \pmod{3} \\ n^{2}+1 \equiv 2 \pmod{3} \\ n^{2}+1 \equiv 5 \pmod{3}}\)
Zatem nie istnieje takie naturalne \(\displaystyle{ n}\), że \(\displaystyle{ n ^{2} +1}\) jest podzielne przez \(\displaystyle{ 3}\).
Zad3) \(\displaystyle{ \left| BC\right|}\) jest przeciwprostokątną trójkąta o przyprostokątnych \(\displaystyle{ 1, 4\sqrt{3}}\), więc \(\displaystyle{ \left| BC\right| = \sqrt{1 ^{2} + \left( 4 \sqrt{3} \right) ^{2}} = \sqrt{49}}\)
Zad 4) Zauważmy, że suma cyfr tej liczby, to suma cyfr od \(\displaystyle{ 1}\) do \(\displaystyle{ 99}\), czyli \(\displaystyle{ 99 \cdot 50}\). Skoro suma cyfr podzielna jest przez \(\displaystyle{ 9}\), to ta liczba także podzielna jest przez \(\displaystyle{ 9 \Rightarrow}\) reszta z dzielenia tej liczby przez \(\displaystyle{ 9}\) jest równa \(\displaystyle{ 0}\).
Zad 5) \(\displaystyle{ y= \frac{x ^{5} }{2}}\)
\(\displaystyle{ y ^{3}=\left( \frac{x ^{5} }{2}\right) ^{3} = \frac{x ^{15}}{8} = 16x}\)
\(\displaystyle{ x ^{15}=128x \Rightarrow x ^{14}=128 \Rightarrow x \in Z}\)
Z tego wynika, że \(\displaystyle{ x}\) musi być równe \(\displaystyle{ 0}\). Skoro \(\displaystyle{ y=\frac{x ^{5} }{2}}\), to \(\displaystyle{ y=0}\), zatem jedyną dwójką \(\displaystyle{ x,y}\) spełniającą ten układ są \(\displaystyle{ x=0,y=0}\)
Zad 6)
\(\displaystyle{ \frac{1}{ \frac{1}{4+ \sqrt{26} } + \frac{1}{6+ \sqrt{26} } }=\frac{1}{\frac{6+\sqrt{26} + 4+\sqrt{26}}{(4+ \sqrt{26})(6+\sqrt{26})}}= \frac{1}{ \frac{10+2\sqrt{26}}{50+10\sqrt{26}} } = \frac{1}{ \frac{2(5+ \sqrt{26}) }{10(5+ \sqrt{26})} } = \frac{1}{ \frac{1}{5} }= 5}\)
Zad 7)
Tutaj trochę blefowałem, bo nie wystarczyło mi czasu, dlatego nie wrzucam rozwiązania. Ale wyszło mi, że jest równa \(\displaystyle{ 5}\). Poprawcie jeżeli nie.
Ostatnio zmieniony 14 maja 2018, o 18:17 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości. Symbol mnożenia to \cdot.

PokEmil
Użytkownik
Użytkownik
Posty: 164
Rejestracja: 25 mar 2017, o 15:35
Płeć: Mężczyzna
Lokalizacja: Zamość
Podziękował: 19 razy
Pomógł: 20 razy

Re: Zadania z egzaminu wstępnego do lo III Wrocław

Post autor: PokEmil » 14 maja 2018, o 20:38

Zadanie 1 - Bez zastrzeżeń.
Zadanie 2 - Dodałbym, że w trzecim przypadku \(\displaystyle{ n ^{2}+1 \equiv 5 \equiv 2 \pmod{3}}\), ale to tylko drobna uwaga, wszystko jest dobrze.
Zadanie 3 - Tak, i oczywiście \(\displaystyle{ \sqrt {49}=7}\).
Zadanie 4 -
Zauważmy, że suma cyfr tej liczby, to suma cyfr(...)

liczb*
Ale tak czy siak - tok myślenia dobry.
Zadanie 5 -
\(\displaystyle{ x ^{15}=128x \Rightarrow x ^{14}=128}\)
No niekoniecznie. Co jeśli \(\displaystyle{ x=0}\)? Wtedy dzielisz przez \(\displaystyle{ 0}\), a tak nie można, be. Zapewne tego nie napisałeś, ale chyba wiesz o tym, bo stwierdzasz później, że \(\displaystyle{ x=0}\). Ja na twoim miejscu przerzuciłbym wszystko na jedną stronę:
\(\displaystyle{ x^{15} - 128x = 0}\), więc \(\displaystyle{ x(x^{14} - 128) = 0}\) i stąd masz \(\displaystyle{ x=0 \vee x^{14} - 128=0}\). Przypadek \(\displaystyle{ x=0}\) rozwiązałeś.
Ogólnie:
\(\displaystyle{ x ^{14}=128 \Rightarrow x \in Z}\)
to jest blefem, powinieneś zapisać to inaczej, może tak: "\(\displaystyle{ x ^{14}=128 \Rightarrow |x| = \sqrt{2}}\), stąd wynika, że \(\displaystyle{ x}\) nie jest całkowite, więc nie istnieje takie \(\displaystyle{ x \in \ZZ}\)".

Swoją drogą, błąd w poleceniu, że nie napisałeś, że \(\displaystyle{ x \in \ZZ}\), czy w rozwiązaniu, że właśnie przyjąłeś, że \(\displaystyle{ x \in \ZZ}\)? Mi się wydaje, że powinno być to w liczbach rzeczywistych. Wtedy powinieneś też rozwiązać przypadki \(\displaystyle{ x = \sqrt {2} \vee x = - \sqrt{2}}\).

Zadanie 6 - Bez zastrzeżeń.
Zadanie 7 - Tak, ten czworokąt to najzwyklejszy prostokąt! Jesli chodzi o pokazanie, że to jest prostokąt, to jest to czysty rachunek na kątach, wystarczy oznaczyć pewne dwa kąty \(\displaystyle{ \alpha, \beta}\) i później przenieść je tak, żeby pokazać, że \(\displaystyle{ \alpha + \beta = 90^ \circ}\).

Awatar użytkownika
SkitsVicious
Użytkownik
Użytkownik
Posty: 21
Rejestracja: 23 sty 2018, o 10:42
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 4 razy

Re: Zadania z egzaminu wstępnego do lo III Wrocław

Post autor: SkitsVicious » 14 maja 2018, o 20:50

W 3 zostawiłem \(\displaystyle{ \sqrt{49}}\), bo zadania musiałem robić naprawdę szybko i zapomniałem wyciągnąć. Zastanawiam się, czy mogą mi odjąć punkt za to.
Co do 4 to pisałem na szybko i mogłem pomylić słowa przy przepisywaniu. Tak czy inaczej chodziło o liczby.
W 5 chodziło o liczby rzeczywiste, nie wziąłem pod uwagę innych \(\displaystyle{ x}\) z powodu presji czasu. Czyli są jakieś inne rozwiązania poza \(\displaystyle{ 0}\) i \(\displaystyle{ 0}\)?

PokEmil
Użytkownik
Użytkownik
Posty: 164
Rejestracja: 25 mar 2017, o 15:35
Płeć: Mężczyzna
Lokalizacja: Zamość
Podziękował: 19 razy
Pomógł: 20 razy

Re: Zadania z egzaminu wstępnego do lo III Wrocław

Post autor: PokEmil » 14 maja 2018, o 21:05

Tak, są. I to dwa.

enedil
Użytkownik
Użytkownik
Posty: 49
Rejestracja: 20 mar 2014, o 16:27
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 1 raz
Pomógł: 3 razy

Re: Zadania z egzaminu wstępnego do lo III Wrocław

Post autor: enedil » 15 maja 2018, o 01:17

Co do zadania 4, to moim zdaniem blef, bo piszesz
Zauważmy, że suma cyfr tej liczby, to suma cyfr od \(\displaystyle{ 1}\) do \(\displaystyle{ 99}\)
.
Załóżmy, że miałeś na myśli "suma liczb". Otóż nie masz racji. Suma cyfr tej liczby, to \(\displaystyle{ 900}\), natomiast suma, o której piszesz jest równa \(\displaystyle{ 99 \cdot 50 = 4950}\). Wynik owszem, dobry - uzasadnienie natomiast błędne.

Awatar użytkownika
SkitsVicious
Użytkownik
Użytkownik
Posty: 21
Rejestracja: 23 sty 2018, o 10:42
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 4 razy

Re: Zadania z egzaminu wstępnego do lo III Wrocław

Post autor: SkitsVicious » 15 maja 2018, o 05:58

enedil pisze:Co do zadania 4, to moim zdaniem blef, bo piszesz
Zauważmy, że suma cyfr tej liczby, to suma cyfr od \(\displaystyle{ 1}\) do \(\displaystyle{ 99}\)
.
Załóżmy, że miałeś na myśli "suma liczb". Otóż nie masz racji. Suma cyfr tej liczby, to \(\displaystyle{ 900}\), natomiast suma, o której piszesz jest równa \(\displaystyle{ 99 \cdot 50 = 4950}\). Wynik owszem, dobry - uzasadnienie natomiast błędne.
Faktycznie, ale nie był to blef bo na sali myślałem, że to dobre uzasadnienie. Zajmując się pierwszymi cyframi w tej liczbie tj. \(\displaystyle{ 12345...}\) kompletnie nie przeszła mi taka banalna myśl przez głowę, że powyżej 10 zaczyna się komplikacja i nie jest to suma kolejnych liczb naturalnych.

ODPOWIEDZ