Suma zbiorów otwarto-domkniętych.

Własności przestrzeni; metryczność, zwartość, spójność... Przekształcenia i deformacje... Teoria wymiaru... słowem - topologia.
matmatmm
Użytkownik
Użytkownik
Posty: 1803
Rejestracja: 14 cze 2011, o 11:34
Płeć: Mężczyzna
Lokalizacja: Sosnowiec
Podziękował: 68 razy
Pomógł: 251 razy

Suma zbiorów otwarto-domkniętych.

Post autor: matmatmm » 29 sie 2018, o 15:42

Szukam przykładu przestrzeni topologicznej \(\displaystyle{ X}\) i rodziny \(\displaystyle{ \mathcal{A}\subseteq \mathcal{P}(X)}\) złożonej ze zbiorów otwarto-domkniętych takiej, że \(\displaystyle{ \bigcup\mathcal{A}}\) nie jest zbiorem domkniętym.

Czy istnieje taki przykład wśród przestrzeni \(\displaystyle{ T_2}\) ?
Czy istnieje taki przykład wśród \(\displaystyle{ X}\), które są podzbiorami \(\displaystyle{ \RR}\) ?
Czy istnieje taki przykład, jeśli zażądamy dodatkowo, by \(\displaystyle{ \mathcal{A}}\) było rodziną przeliczalną?

Awatar użytkownika
leg14
Użytkownik
Użytkownik
Posty: 3121
Rejestracja: 5 lis 2014, o 20:24
Płeć: Mężczyzna
Lokalizacja: Radom
Podziękował: 152 razy
Pomógł: 475 razy

Suma zbiorów otwarto-domkniętych.

Post autor: leg14 » 29 sie 2018, o 16:01

Niech \(\displaystyle{ X = \left\{ \frac{1}{n} : n >2\right\} \cup \left\{ 1 - \frac{1}{n}: n>2 \right\} \cup \left\{ 0\right\} \cup \left\{ 1\right\}}\)
Z topologią indukowaną przez metrykę euklidesową.
Niech \(\displaystyle{ A_m = \left\{ x \in X: x < 1 - \frac{1}{m} \right\}}\) dla \(\displaystyle{ m=3,4,...}\)
Wówczas \(\displaystyle{ \bigcup_{}^{} A_m}\) jest ...

matmatmm
Użytkownik
Użytkownik
Posty: 1803
Rejestracja: 14 cze 2011, o 11:34
Płeć: Mężczyzna
Lokalizacja: Sosnowiec
Podziękował: 68 razy
Pomógł: 251 razy

Re: Suma zbiorów otwarto-domkniętych.

Post autor: matmatmm » 29 sie 2018, o 16:29

Oke. Widzę, że to było banalne. Zadziała też prostszy przykład:

\(\displaystyle{ X=\left\{ \frac{1}{n}:n\in\NN\right\} \cup\{0\}}\)
\(\displaystyle{ A_m=\left\{ x\in X: x>\frac{1}{m}\right\}}\)

ODPOWIEDZ