Homeomorfizm - kula jednostkowa i trójkąt

Własności przestrzeni; metryczność, zwartość, spójność... Przekształcenia i deformacje... Teoria wymiaru... słowem - topologia.
duze_jablko2
Użytkownik
Użytkownik
Posty: 153
Rejestracja: 30 cze 2013, o 18:19
Płeć: Mężczyzna
Lokalizacja: warszawa
Podziękował: 54 razy
Pomógł: 1 raz

Homeomorfizm - kula jednostkowa i trójkąt

Post autor: duze_jablko2 » 25 maja 2018, o 09:39

Jak wykazać, że istnieje homeomorfizm przekształcający dowolny trójkąt na kulę jednostkową?

bartek118
Gość Specjalny
Gość Specjalny
Posty: 5971
Rejestracja: 28 lut 2010, o 19:45
Płeć: Mężczyzna
Lokalizacja: Toruń
Podziękował: 15 razy
Pomógł: 1251 razy

Re: Homeomorfizm - kula jednostkowa i trójkąt

Post autor: bartek118 » 25 maja 2018, o 09:48

Skonstruuj go - bez straty ogólności niech punkt \(\displaystyle{ 0}\) leży we wnętrzu trójkąta. Wypuszczamy półprostą z \(\displaystyle{ 0}\) w dowolnym kierunku. Na tej półprostej rozciągamy fragment trójkąta w taki sposób, aby pokrył się z fragmentem kuli na tej półprostej.

Opis jest dość prosty, ale wzór będzie dość skomplikowany. Niech \(\displaystyle{ r}\) oznacza punkt przecięcia brzegu trójkąta z ustaloną półprostą. Wtedy ten punkt musi przejść na punkt o normie \(\displaystyle{ 1}\), tj.
\(\displaystyle{ r \mapsto \frac{r}{\|r\|}}\)
i w takim samym stosunku należy przekształcić pozostałe punkty, tj. dla punktu \(\displaystyle{ x}\) na trójkącie przerzucamy
\(\displaystyle{ x \mapsto \frac{x}{\|r\|}.}\)
Odwzorowanie oczywiście jest bijekcją na każdej półprostej, więc z rozłączności półprostych, jest bijekcją z trójkąta na kulę. Trzeba się chwilę pochylić nad ciągłością -- oczywiście jest ona zachowana na każdej półprostej, trzeba jedynie zbadać co się dzieje, na bliskich półprostych.

-- 25 maja 2018, o 09:54 --

Można pokusić się o dowód czegoś więcej. Dowolny wypukły, zwarty podzbiór o niepustym wnętrzu w \(\displaystyle{ \RR^n}\) jest homeomorficzny z kulą jednostkową -- dowód w gruncie rzeczy jest taki sam, jak dla trójkąta

a4karo
Użytkownik
Użytkownik
Posty: 17145
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 3 razy
Pomógł: 2882 razy

Re: Homeomorfizm - kula jednostkowa i trójkąt

Post autor: a4karo » 25 maja 2018, o 10:35

Kula jest trójwymiarowa a trójkąt płaski. Ciężko będzie

bartek118
Gość Specjalny
Gość Specjalny
Posty: 5971
Rejestracja: 28 lut 2010, o 19:45
Płeć: Mężczyzna
Lokalizacja: Toruń
Podziękował: 15 razy
Pomógł: 1251 razy

Re: Homeomorfizm - kula jednostkowa i trójkąt

Post autor: bartek118 » 25 maja 2018, o 13:22

a4karo pisze:Kula jest trójwymiarowa a trójkąt płaski. Ciężko będzie
Rozumiałem, że autor miał na myśli kulę jednostkową w \(\displaystyle{ \RR^2}\).

a4karo
Użytkownik
Użytkownik
Posty: 17145
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 3 razy
Pomógł: 2882 razy

Re: Homeomorfizm - kula jednostkowa i trójkąt

Post autor: a4karo » 25 maja 2018, o 15:29

bartek118 pisze:
a4karo pisze:Kula jest trójwymiarowa a trójkąt płaski. Ciężko będzie
Rozumiałem, że autor miał na myśli kulę jednostkową w \(\displaystyle{ \RR^2}\).
Ja bym wolał pomyśleć że trójkąt jest czworościanem

ODPOWIEDZ