W imię pokoju

Własności przestrzeni; metryczność, zwartość, spójność... Przekształcenia i deformacje... Teoria wymiaru... słowem - topologia.
Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 8612
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 37 razy
Pomógł: 1811 razy

W imię pokoju

Post autor: Dasio11 » 24 sty 2018, o 13:03

11 listopada ulicami Warszawy przejdą Marsz Niepodległości i pochód Koalicji Antyfaszystowskiej. Pod naciskiem MSWiA organizatorzy postanowili porozumieć się w sprawie ustalenia czasu i trasy marszów w taki sposób, aby nie doszło do zamieszek. Niestety, jak donoszą informatorzy ministra, nie całkiem pokojowo nastawiona grupa uczestników jednej z organizacji planuje usytuować (oczywiście incognito) swoich członków na czołach obu marszów wraz z szerokimi transparentami, co pozwoli im przejąć całkowitą kontrolę nad tempem pochodów - organizatorzy nie mogą zatem z pewnością stwierdzić, o której godzinie dany marsz kroczyć będzie danym fragmentem trasy. Co gorsza, ogłoszono już wcześniej, iż trasa Marszu Niepodległości rozpocznie się w punkcie \(\displaystyle{ A}\) i zakończy w punkcie \(\displaystyle{ C,}\) podczas gdy antyfaszyści przejdą od punktu \(\displaystyle{ B}\) do punktu \(\displaystyle{ D.}\) Dla uproszczenia zakładamy, że Warszawa ma kształt prostokąta a trasy marszów nie są ograniczone przez budynki, parki, itd. Punkty krańcowe pochodów zaznaczono na poniższym rysunku:

\(\displaystyle{ \begin{tikzpicture} \draw (0, 0) node [below left] { $A$ } -- (3, 0) node [below right] { $B$ } -- (3, 2) node [above right] {$C$ } -- (0, 2) node [above left] {$D$ } -- (0, 0); \fill (0, 0) circle [radius=0.05]; \fill (3, 0) circle [radius=0.05]; \fill (3, 2) circle [radius=0.05]; \fill (-0, 2) circle [radius=0.05]; \end{tikzpicture}}\)

Czy organizatorom uda się zagwarantować bezpieczeństwo uczestnikom obu manifestacji?

Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 8612
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 37 razy
Pomógł: 1811 razy

Re: W imię pokoju

Post autor: Dasio11 » 11 kwie 2018, o 09:23

Żeby usunąć ewentualnie wątpliwości, dołączam czysto matematyczne sformułowanie: niech \(\displaystyle{ I = [0, 1]}\) oraz niech \(\displaystyle{ R}\) będzie domkniętym prostokątem o wierzchołkach \(\displaystyle{ A, B, C, D,}\) w kolejności jak na rysunku. Czy istnieją funkcje ciągłe \(\displaystyle{ \alpha, \beta : I \to R,}\) takie że \(\displaystyle{ \alpha(0) = A, \alpha(1) = C, \beta(0) = B, \beta(1) = D}\) oraz \(\displaystyle{ \alpha[I] \cap \beta[I] = \varnothing}\) ?

bartek118
Gość Specjalny
Gość Specjalny
Posty: 5971
Rejestracja: 28 lut 2010, o 19:45
Płeć: Mężczyzna
Lokalizacja: Toruń
Podziękował: 15 razy
Pomógł: 1251 razy

Re: W imię pokoju

Post autor: bartek118 » 11 kwie 2018, o 09:54

Myślę, że potrafię udowodnić, że takie ciągłe krzywe nie istnieją.

Można jednak połączyć te punkty zbiorami spójnymi.

Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 8612
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 37 razy
Pomógł: 1811 razy

Re: W imię pokoju

Post autor: Dasio11 » 11 kwie 2018, o 11:48

Jak?

bartek118
Gość Specjalny
Gość Specjalny
Posty: 5971
Rejestracja: 28 lut 2010, o 19:45
Płeć: Mężczyzna
Lokalizacja: Toruń
Podziękował: 15 razy
Pomógł: 1251 razy

Re: W imię pokoju

Post autor: bartek118 » 11 kwie 2018, o 12:34

Zbiory spójne:

Bez straty ogólności niech \(\displaystyle{ ABCD}\) będzie kwadratem jednostkowym, \(\displaystyle{ A=(0,0)}\), \(\displaystyle{ B=(1,0)}\), \(\displaystyle{ C=(1,1)}\) i \(\displaystyle{ D=(0,1)}\).

Niech \(\displaystyle{ f : (0,1] \rightarrow \RR}\) będzie dana wzorem \(\displaystyle{ f(x) = \sin \left( \frac{1}{x} \right)}\). Przeciągnijmy teraz odcinek \(\displaystyle{ (0,1]}\) na odcinek łączący punkt \(\displaystyle{ A = (0,0)}\) z \(\displaystyle{ S = \left( \frac{1}{2}, \frac{1}{2} \right)}\) w taki sposób, że punkt \(\displaystyle{ 1}\) odpowiada \(\displaystyle{ A}\), zaś \(\displaystyle{ 0}\) punktowi \(\displaystyle{ S}\) i narysujmy na tym odcinku wykres funkcji \(\displaystyle{ f}\) (być może trzeba podzielić przez jakąś stałą tak, aby zmieścił się w kwadracie). Analogicznie z drugiej strony na odcinku \(\displaystyle{ SC}\). jako pierwszy zbiór \(\displaystyle{ K_1}\) bierzemy te dwa wykresy i punkt \(\displaystyle{ S}\). Wtedy zbiór \(\displaystyle{ K_1}\) jest spójnym podzbiorem kwadratu i zawiera \(\displaystyle{ A}\) oraz \(\displaystyle{ C}\).
Jeżeli teraz popatrzysz na przekątną jako dziedzinę funkcji, a \(\displaystyle{ K_1}\) jako jej wykres, to wykres jest spójny, a funkcja nieciągła (w punkcie \(\displaystyle{ S}\)). Czyli dopełnienie wykresu jest spójne, co oznacza, że \(\displaystyle{ K_2}\) zdefiniowany jako dopełnienie \(\displaystyle{ K_1}\) w kwadracie jest spójne.

Nieistnienie krzywych:

Przypuśćmy, że takie funkcje \(\displaystyle{ \alpha}\) i \(\displaystyle{ \beta}\) istnieją.
Określmy \(\displaystyle{ h : [0,1]^2 \rightarrow S(0,1)}\) wzorem
\(\displaystyle{ h(s,t) = \frac{\alpha(s) - \beta(t)}{|\alpha(s) - \beta(t)|}}\)
Określmy
\(\displaystyle{ \alpha_1 (t) = \chi_{0 \leq t \leq 1/2} (t) (0,2t) + \chi_{1/2 < t \leq 1}(t) (2t-1,1), \\ \alpha_2 (t) = \chi_{0 \leq t \leq 1/2} (t) (2t,0) + \chi_{1/2 < t \leq 1}(t) (1, 2t-1),}\)
czyli idziemy po obwodzie kwadratu z \(\displaystyle{ A}\) do \(\displaystyle{ C}\) (na dwa sposoby). Jednak obrazy tych dróg przez \(\displaystyle{ h}\) to drogi na okręgu - jedna idąca 'w górę' po lewym półłuku, druga idąca 'w dół' po prawym półłuku, zaś \(\displaystyle{ h}\) stanowi homotopię dla tych dróg - sprzeczność.

-- 12 kwi 2018, o 20:10 --

Dasio11, ma to jakiś sens? ;) Czy gdzieś się mylę?

Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 8612
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 37 razy
Pomógł: 1811 razy

Re: W imię pokoju

Post autor: Dasio11 » 14 kwie 2018, o 11:30

Pierwsze rozwiązanie poprawne, a do tego sam fakt jest ciekawy. Dzięki.

W drugim parę nieścisłości:
[quote="bartek118"]Jednak obrazy tych dróg przez \(\displaystyle{ h}\) to drogi na okręgu - jedna idąca 'w górę' po lewym półłuku, druga idąca 'w dół' po prawym półłuku,[/quote] Obie drogi idą z lewej do prawej - jedna dołem, druga górą.
[quote="bartek118"]zaś \(\displaystyle{ h}\) stanowi homotopię dla tych dróg[/quote] Formalnie nie, ale mając \(\displaystyle{ h,}\) łatwo taką homotopię skonstruować.

Te błędy są oczywiście nieistotne, a rozwiązanie jako całość jest bardzo dobre.

Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 8612
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 37 razy
Pomógł: 1811 razy

Re: W imię pokoju

Post autor: Dasio11 » 1 maja 2018, o 10:02

Ok, a czy istnieje funkcja ciągła \(\displaystyle{ \alpha : [0, 1] \to R}\) i zbiór spójny \(\displaystyle{ S \subseteq R,}\) takie że

\(\displaystyle{ \bullet \, \alpha(0) = A, \, \alpha(1) = C}\)

\(\displaystyle{ \bullet \, \{ B, D \} \subseteq S}\)

\(\displaystyle{ \bullet \, S \cap \alpha \big[ [0, 1] \big] = \varnothing}\) ?

bartek118
Gość Specjalny
Gość Specjalny
Posty: 5971
Rejestracja: 28 lut 2010, o 19:45
Płeć: Mężczyzna
Lokalizacja: Toruń
Podziękował: 15 razy
Pomógł: 1251 razy

Re: W imię pokoju

Post autor: bartek118 » 3 maja 2018, o 11:09

Dasio11 pisze:Ok, a czy istnieje funkcja ciągła \(\displaystyle{ \alpha : [0, 1] \to R}\) i zbiór spójny \(\displaystyle{ S \subseteq R,}\) takie że

\(\displaystyle{ \bullet \, \alpha(0) = A, \, \alpha(1) = C}\)

\(\displaystyle{ \bullet \, \{ B, D \} \subseteq S}\)

\(\displaystyle{ \bullet \, S \cap \alpha \big[ [0, 1] \big] = \varnothing}\) ?
Taka kombinacja? Hm... muszę pomyśleć nad tym; nie znam odpowiedzi.

Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 8612
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 37 razy
Pomógł: 1811 razy

Re: W imię pokoju

Post autor: Dasio11 » 11 maja 2018, o 16:20

Hint:    

bartek118
Gość Specjalny
Gość Specjalny
Posty: 5971
Rejestracja: 28 lut 2010, o 19:45
Płeć: Mężczyzna
Lokalizacja: Toruń
Podziękował: 15 razy
Pomógł: 1251 razy

Re: W imię pokoju

Post autor: bartek118 » 11 maja 2018, o 16:22

Dasio11 pisze:Hint: Otwarty, spójny podzbiór \(\displaystyle{ R}\) jest łukowo spójny.
Czyli zdaje się, że nie jest to możliwe

ODPOWIEDZ