pająk wędrujący po ścianach szopy

Matematyczne łamigłowki i zagadki...
umiejscowiony1
Użytkownik
Użytkownik
Posty: 11
Rejestracja: 11 lis 2011, o 17:20
Płeć: Mężczyzna
Lokalizacja: Warszawa

pająk wędrujący po ścianach szopy

Post autor: umiejscowiony1 » 19 lis 2011, o 13:33

Witam,
Mam zagadkę z pająkiem:)

Pewien pająk lubi wędrować nocą po szopie po
jej ścianach, podłodze i suficie od jednego
narożnika szopy do drugiego, znajdującego się
po przeciwnej stronie. Szopa ma wymiary a ×
b × c.
Jaką ścieżką powinien pójść pająk, żeby dotrzeć
do przeciwległego narożnika przemierzając
najkrótszy dystans? Jaka jest długość tej
najkrótszej ścieżki?

tak wygląda szopa:
http://imageshack.us/photo/my-images/11/szopag.png/

Awatar użytkownika
szw1710
Gość Specjalny
Gość Specjalny
Posty: 18761
Rejestracja: 1 cze 2010, o 22:13
Płeć: Mężczyzna
Lokalizacja: Cieszyn
Podziękował: 3 razy
Pomógł: 3726 razy

pająk wędrujący po ścianach szopy

Post autor: szw1710 » 19 lis 2011, o 16:37

Narysuj siatkę prostopadłościanu na płaszczyźnie i połącz punkty początkowy i końcowy naszej drogi linią prostą.

umiejscowiony1
Użytkownik
Użytkownik
Posty: 11
Rejestracja: 11 lis 2011, o 17:20
Płeć: Mężczyzna
Lokalizacja: Warszawa

pająk wędrujący po ścianach szopy

Post autor: umiejscowiony1 » 19 lis 2011, o 16:43

ale przeciez musi chodzic po scianie, suficie lub podlodze.

Awatar użytkownika
szw1710
Gość Specjalny
Gość Specjalny
Posty: 18761
Rejestracja: 1 cze 2010, o 22:13
Płeć: Mężczyzna
Lokalizacja: Cieszyn
Podziękował: 3 razy
Pomógł: 3726 razy

pająk wędrujący po ścianach szopy

Post autor: szw1710 » 19 lis 2011, o 16:45

No to z narysowanej siatki złóż z powrotem prostopadłościan. To rozwiązanie jest najprostsze z możliwych , bo bazuje na tym, że na płaszczyźnie z dróg łączących dwa punkty najkrótszą jest prostoliniowa.

Awatar użytkownika
Tomek_Fizyk-10
Użytkownik
Użytkownik
Posty: 319
Rejestracja: 20 lis 2010, o 15:03
Płeć: Mężczyzna
Lokalizacja: Biskupiec
Podziękował: 73 razy
Pomógł: 3 razy

pająk wędrujący po ścianach szopy

Post autor: Tomek_Fizyk-10 » 22 lis 2011, o 20:06

Najkrótsza droga pająka, to
\(\displaystyle{ min \left( s\right) = \sqrt{a ^{2} + b ^{2} + c ^{2} + 2bc }}\)

..., na którą zapewne nigdy nie wpadnie.

Mathematics
Użytkownik
Użytkownik
Posty: 3
Rejestracja: 19 gru 2019, o 00:50
Płeć: Kobieta
wiek: 25
Podziękował: 1 raz

Re: pająk wędrujący po ścianach szopy

Post autor: Mathematics » 19 gru 2019, o 01:00

Tomek_Fizyk-10 pisze:
22 lis 2011, o 20:06
Najkrótsza droga pająka, to
\(\displaystyle{ min \left( s\right) = \sqrt{a ^{2} + b ^{2} + c ^{2} + 2bc }}\)

..., na którą zapewne nigdy nie wpadnie.
Mam prośbę o napisanie coś więcej o rozwiązaniu.
Z góry dziękuję.

Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 7793
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna
Podziękował: 237 razy
Pomógł: 3061 razy

Re: pająk wędrujący po ścianach szopy

Post autor: kerajs » 19 gru 2019, o 05:35

Pająk wędruje tylko po dwóch ścianach przecinając tylko jedną krawędź. Wystarczy, że narysujesz siatkę tych dwóch ścian, a drogą pająka będzie prosta między wierzchołkami START i META. Możliwe są trzy drogi:
a) po przekątnej prostokąta o wymiarach: \(\displaystyle{ (b+c) \times a}\), której długość to :
\(\displaystyle{ s_a= \sqrt{(b+c)^2+a^2}= \sqrt{a^2+b^2+c^2+2bc} }\)
b) po przekątnej prostokąta o wymiarach: \(\displaystyle{ (a+c) \times b}\), której długość to :
\(\displaystyle{ s_b= \sqrt{(a+c)^2+b^2}= \sqrt{a^2+b^2+c^2+2ac} }\)
c) po przekątnej prostokąta o wymiarach: \(\displaystyle{ (a+b) \times c}\), której długość to :
\(\displaystyle{ s_c= \sqrt{(a+b)^2+c^2}= \sqrt{a^2+b^2+c^2+2ab} }\)
Najkrótszą drogą jest najkrótsza z powyższych.

Rozwiązanie podane przez użytkownika Tomek_Fizyk-10 zakłada, że \(\displaystyle{ a}\) jest najdłuższą (lub nie mniejszą od każdej z pozostałych dwóch) krawędzią prostopadłościanu .

Mathematics
Użytkownik
Użytkownik
Posty: 3
Rejestracja: 19 gru 2019, o 00:50
Płeć: Kobieta
wiek: 25
Podziękował: 1 raz

Re: pająk wędrujący po ścianach szopy

Post autor: Mathematics » 21 gru 2019, o 08:40

Dziękuję :)

ODPOWIEDZ