Policz całkę używając funkcji gamma eulera (proszę o sprawdzenie rozwiązania)

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
Awatar użytkownika
cmnstrnbnn
Użytkownik
Użytkownik
Posty: 83
Rejestracja: 4 mar 2019, o 20:45
Płeć: Mężczyzna
Lokalizacja: Lublin
Podziękował: 11 razy
Pomógł: 1 raz

Policz całkę używając funkcji gamma eulera (proszę o sprawdzenie rozwiązania)

Post autor: cmnstrnbnn » 23 cze 2022, o 10:15

Policz całkę używając funkcji gamma eulera
\(\displaystyle{ \int_{0}^{\infty}x^{4}e^{-x^{10}} dx }\)

To więc liczę
\(\displaystyle{ \int_{0}^{\infty}x^{4}e^{-x^{10}} dx = \frac{1}{10} \int_{0}^{\infty} \frac{10 x^{9}e^{-x^{10}}}{x^{5}} dx =}\)

Podstawiam \(\displaystyle{ t=x^{10}}\), wtedy \(\displaystyle{ dt=10x^{9} dx}\) oraz \(\displaystyle{ t ^{1/2}=x^{5} }\)
\(\displaystyle{ \frac{1}{10} \int_{0}^{\infty} \frac{10 x^{9}e^{-x^{10}}}{x^{5}} dx = \frac{1}{10} \int_{0}^{\infty} t^{ \frac{1}{2}-1}e^{-t}dt =\frac{Γ( \frac{1}{2})}{10} = \frac{\sqrt{\pi}}{10} }\)

Czy moje rozwiązanie jest poprawne?

ODPOWIEDZ