Granica ilorazu funkcji wykładniczej i silnii

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
Awatar użytkownika
LecHu :)
Użytkownik
Użytkownik
Posty: 955
Rejestracja: 23 gru 2005, o 23:46
Płeć: Mężczyzna
Lokalizacja: BFGD
Podziękował: 16 razy
Pomógł: 161 razy

Granica ilorazu funkcji wykładniczej i silnii

Post autor: LecHu :) » 17 mar 2008, o 21:00

\(\displaystyle{ \lim\limits_{n\to\infty}\frac{2^{n}}{n!}=0}\)
Mam to udowodnić.Jak to zrobić formalnie?Czy mogę użyć wzoru przybliżonego Stirlinga?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

natkoza
Użytkownik
Użytkownik
Posty: 2278
Rejestracja: 11 kwie 2007, o 18:49
Płeć: Kobieta
Lokalizacja: Dąbrowa Górnicza
Podziękował: 41 razy
Pomógł: 602 razy

Granica ilorazu funkcji wykładniczej i silnii

Post autor: natkoza » 17 mar 2008, o 21:44

nie wiem, czy mozna, ale napewno sie nie opłaca ;P
\(\displaystyle{ \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^n}{n!}}=\frac{2\cdot 2^n}{n!(n+1)}\cdot \frac{n!}{2^n}=\frac{2}{n+1}\to 0}\)

Awatar użytkownika
LecHu :)
Użytkownik
Użytkownik
Posty: 955
Rejestracja: 23 gru 2005, o 23:46
Płeć: Mężczyzna
Lokalizacja: BFGD
Podziękował: 16 razy
Pomógł: 161 razy

Granica ilorazu funkcji wykładniczej i silnii

Post autor: LecHu :) » 17 mar 2008, o 22:20

Możesz mi to jakoś bardziej łopatologicznie wytłumaczyć, bo z tego co ja widzę, napisałaś coś, co nie jest równoważne z \(\displaystyle{ \frac{2^{n}}{n!}}\)

natkoza
Użytkownik
Użytkownik
Posty: 2278
Rejestracja: 11 kwie 2007, o 18:49
Płeć: Kobieta
Lokalizacja: Dąbrowa Górnicza
Podziękował: 41 razy
Pomógł: 602 razy

Granica ilorazu funkcji wykładniczej i silnii

Post autor: natkoza » 17 mar 2008, o 22:32

no nie... ja badam po prostu wartość ilorazu \(\displaystyle{ \frac{a_{n+1}}{a_n}}\) a to jest jedna z metod, wyznaczania granicy (zerowej), bo to pokazuje, ze mianownik "szybciej zmierza" do nieskończonosci niż licznik

Wasilewski
Użytkownik
Użytkownik
Posty: 3921
Rejestracja: 10 gru 2007, o 20:10
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 36 razy
Pomógł: 1194 razy

Granica ilorazu funkcji wykładniczej i silnii

Post autor: Wasilewski » 17 mar 2008, o 22:39

To jest chyba wniosek z kryterium d'Alemberta. Bo jeśli szereg \(\displaystyle{ \sum a_n}\) jest zbieżny, co przed chwilą udowodniłaś, to \(\displaystyle{ \lim_{ n\to\infty } a_n = 0}\)

natkoza
Użytkownik
Użytkownik
Posty: 2278
Rejestracja: 11 kwie 2007, o 18:49
Płeć: Kobieta
Lokalizacja: Dąbrowa Górnicza
Podziękował: 41 razy
Pomógł: 602 razy

Granica ilorazu funkcji wykładniczej i silnii

Post autor: natkoza » 17 mar 2008, o 22:43

no dokładnie choć nie kazdy w wieku 18 lat juz słyszał o szeregach, więc wolałam tego uzasadnienia nie podawac, natomiast tą metode poznałam już w liceum, wiec chyba mozna jej użyc

Awatar użytkownika
przemk20
Użytkownik
Użytkownik
Posty: 1094
Rejestracja: 6 gru 2006, o 22:47
Płeć: Mężczyzna
Lokalizacja: Olesno
Podziękował: 45 razy
Pomógł: 236 razy

Granica ilorazu funkcji wykładniczej i silnii

Post autor: przemk20 » 17 mar 2008, o 22:48

a mozn tak, jest rzecza oczywista ze dla pewnego
\(\displaystyle{ n \geq n_0 \\
(n-1)! >2^n}\)

widzimy ze
\(\displaystyle{ 5! > 2^6}\)
czyli
\(\displaystyle{ (n-1)! = (n-1)(n-2)...6 \cdot 5! > 2^{n-6} \cdot 5! > 2^{n}}\)
czyli
\(\displaystyle{ 0< \frac{2^n}{n!} = \frac{1}{n} \frac{2^n}{(n-1)!} < \frac{1}{n} \to 0}\)

ODPOWIEDZ