Najmniejszy wyraz ciągu

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
xdominika
Użytkownik
Użytkownik
Posty: 45
Rejestracja: 14 lis 2019, o 22:59
Płeć: Kobieta
wiek: 19
Podziękował: 15 razy

Najmniejszy wyraz ciągu

Post autor: xdominika » 4 gru 2019, o 13:53

Znaleźć najmniejszy wyraz ciągu \(\displaystyle{ a_{n}=\left(1- \frac{1}{\left( n+1\right)\left( 2n-3\right) } \right)^{2013} }\).
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 14521
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 90 razy
Pomógł: 4783 razy

Re: Najmniejszy wyraz ciągu

Post autor: Premislav » 4 gru 2019, o 14:07

Udowodnij, że ciąg \(\displaystyle{ (a_{n})}\) jest rosnący. Możesz wykorzystać to, że funkcja \(\displaystyle{ f(x)=x^{a}, \ a>0}\) ustalone, jest rosnąca (tutaj \(\displaystyle{ a=2013}\)). Dalej zostają już tylko przekształcenia algebraiczne nierówności
\(\displaystyle{ 1-\frac{1}{(n+2)(2n-1)}>1-\frac{1}{(n+1)(2n-3)}}\).
Skoro zaś udowodnisz, że ciąg jest rosnący, to najmniejszym wyrazem okaże się \(\displaystyle{ a_{1}}\).

Awatar użytkownika
Janusz Tracz
Użytkownik
Użytkownik
Posty: 2553
Rejestracja: 13 sie 2016, o 15:01
Płeć: Mężczyzna
Lokalizacja: hrubielowo
Podziękował: 68 razy
Pomógł: 793 razy

Re: Najmniejszy wyraz ciągu

Post autor: Janusz Tracz » 4 gru 2019, o 14:09

Zauważ, że:

\(\displaystyle{ 1)}\) ciąg \(\displaystyle{ 1- \frac{1}{(n+1)(2n-3)} }\) jest rosnący na \(\displaystyle{ n\in\NN \setminus \left\{ 1\right\} }\)

\(\displaystyle{ 2)}\) podniesienie do potęgi \(\displaystyle{ 2013}\) nie zmiana monotoniczności zatem \(\displaystyle{ a_2}\) jest najmniejszy.

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 14521
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 90 razy
Pomógł: 4783 razy

Re: Najmniejszy wyraz ciągu

Post autor: Premislav » 4 gru 2019, o 14:11

A rzeczywiście, mój błąd, \(\displaystyle{ a_{2}}\). :(

xdominika
Użytkownik
Użytkownik
Posty: 45
Rejestracja: 14 lis 2019, o 22:59
Płeć: Kobieta
wiek: 19
Podziękował: 15 razy

Re: Najmniejszy wyraz ciągu

Post autor: xdominika » 4 gru 2019, o 14:16

Janusz Tracz pisze:
4 gru 2019, o 14:09
Zauważ, że:

\(\displaystyle{ 1)}\) ciąg \(\displaystyle{ 1- \frac{1}{(n+1)(2n-3)} }\) jest rosnący na \(\displaystyle{ n\in\NN \setminus \left\{ 1\right\} }\)

\(\displaystyle{ 2)}\) podniesienie do potęgi \(\displaystyle{ 2013}\) nie zmiana monotoniczności zatem \(\displaystyle{ a_2}\) jest najmniejszy.
Dlaczego dziedzina jest bez 1?

Awatar użytkownika
Janusz Tracz
Użytkownik
Użytkownik
Posty: 2553
Rejestracja: 13 sie 2016, o 15:01
Płeć: Mężczyzna
Lokalizacja: hrubielowo
Podziękował: 68 razy
Pomógł: 793 razy

Re: Najmniejszy wyraz ciągu

Post autor: Janusz Tracz » 4 gru 2019, o 14:21

\(\displaystyle{ 1}\) należy do dziedziny ale dla jedynki liczba jaką będziemy podnosić do \(\displaystyle{ 2013}\) jest większa do \(\displaystyle{ 1}\) a dla reszty \(\displaystyle{ n}\) liczby które będą podnoszone do \(\displaystyle{ 2013}\) są mniejsze od \(\displaystyle{ 1}\) więc od razu widać, że \(\displaystyle{ a_1}\) nie będzie najmniejszy.

ODPOWIEDZ