ph, logarytm

Zagadnienia dot. funkcji logarytmicznych i wykładniczych. RÓWNANIA I NIERÓWNOŚCI.
Bellward
Użytkownik
Użytkownik
Posty: 45
Rejestracja: 22 lip 2016, o 19:25
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 6 razy

ph, logarytm

Post autor: Bellward » 10 sie 2019, o 01:47

Witam.
W szkolę jeszcze nie miałem logarytmów. Proszę o pomoc w rozpisaniu tego przykładu. Wiem, że zakończeniem tego przykładu powinno wynieść \(\displaystyle{ PH = 7}\), ale nie potrafię tego rozpisać dalej.
Proszę o pomoc
\(\displaystyle{ PH =-\log [H^{+}]}\)
\(\displaystyle{ PH = -\log [1 \cdot 10^{-7}]}\)
\(\displaystyle{ PH = -\log [10^{-7}]}\)
Ostatnio zmieniony 10 sie 2019, o 08:35 przez AiDi, łącznie zmieniany 1 raz.
Powód: Symbol mnożenia to \cdot. Punkt 2.7 instrukcji LaTeX-a. Funkcje matematyczne należy zapisywać: sinus - \sin, logarytm - \log, logarytm naturalny - \ln itd.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
MrCommando
Użytkownik
Użytkownik
Posty: 543
Rejestracja: 5 gru 2016, o 21:55
Płeć: Mężczyzna
Lokalizacja: Płock/MiNI PW
Podziękował: 47 razy
Pomógł: 104 razy

ph, logarytm

Post autor: MrCommando » 10 sie 2019, o 01:54

Korzystając z tożsamości \(\displaystyle{ \log_a b^k=k\cdot \log_a b}\) zachodzącej dla dowolnych \(\displaystyle{ a,b>0}\), \(\displaystyle{ a\neq 1}\), \(\displaystyle{ k\in\mathbb{R}}\), można otrzymać, że zachodzi \(\displaystyle{ -\log 10^{-7}=-\left(-7\log 10\right)=7\log 10=7\cdot 1=7}\).

Albo nawet bez takich. Wprost z definicji logarytmu mamy \(\displaystyle{ \log 10^{-7}=-7}\).

Bellward
Użytkownik
Użytkownik
Posty: 45
Rejestracja: 22 lip 2016, o 19:25
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 6 razy

ph, logarytm

Post autor: Bellward » 10 sie 2019, o 02:06

Dziękuje za odpowiedź.
A co się stało z tą \(\displaystyle{ 10}\) ?
\(\displaystyle{ 7\log 10=7\cdot 1=7}\).

A tym drugim sposobem.
\(\displaystyle{ -\log _{1}10^{-7}}\)
\(\displaystyle{ 1}\) do jakiej potęgi da \(\displaystyle{ -7}\)?
Chyba, że ja czegoś nie rozumiem.
Proszę o pomoc.
Ostatnio zmieniony 10 sie 2019, o 19:25 przez Dasio11, łącznie zmieniany 2 razy.
Powód: Poprawa wiadomości.

Awatar użytkownika
MrCommando
Użytkownik
Użytkownik
Posty: 543
Rejestracja: 5 gru 2016, o 21:55
Płeć: Mężczyzna
Lokalizacja: Płock/MiNI PW
Podziękował: 47 razy
Pomógł: 104 razy

ph, logarytm

Post autor: MrCommando » 10 sie 2019, o 03:06

Przeczytaj sobie czym jest logarytm, bo trudno będzie wykonywać jakiekolwiek operacje na logarytmach nie orientując się zbytnio. Liczba \(\displaystyle{ \log x}\) to jest taka, do której trzeba podnieść \(\displaystyle{ 10}\), aby otrzymać \(\displaystyle{ x}\). Zatem \(\displaystyle{ \log 1000=3}\), ponieważ \(\displaystyle{ 10^3=1000}\). Analogicznie \(\displaystyle{ \log 10=1}\), bo \(\displaystyle{ 10^1=10}\). Tak samo \(\displaystyle{ \log 10^{-7}=-7}\).

Zapis \(\displaystyle{ \log_1 10}\) nie jest też poprawny, bo logarytm definiuje się dla dodatniej podstawy różnej od \(\displaystyle{ 1}\). Przy czym jeżeli ta podstawa nie została zapisana, to przyjmujemy że jest ona równa \(\displaystyle{ 10}\), tzn. przyjmujemy zapis \(\displaystyle{ \log_{10} x=\log x}\).

Bellward
Użytkownik
Użytkownik
Posty: 45
Rejestracja: 22 lip 2016, o 19:25
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 6 razy

ph, logarytm

Post autor: Bellward » 10 sie 2019, o 11:52

Zrozumiałem.
Dziękuję za pomoc.
Ostatnio zmieniony 10 sie 2019, o 19:25 przez Dasio11, łącznie zmieniany 1 raz.
Powód: Nie cytuj całej poprzedzającej wiadomości.

ODPOWIEDZ