zaznacz zbiór punktów

Zagadnienia dot. funkcji logarytmicznych i wykładniczych. RÓWNANIA I NIERÓWNOŚCI.
yoana91
Użytkownik
Użytkownik
Posty: 357
Rejestracja: 17 mar 2009, o 20:26
Płeć: Kobieta
Podziękował: 59 razy
Pomógł: 1 raz

zaznacz zbiór punktów

Post autor: yoana91 » 8 mar 2010, o 18:10

na płaszczyźnie OAB zaznacz zbiór punktów, dla których zachodzi następujący warunek:

\(\displaystyle{ \log _{2}(a+b)=\log _{2}a+\log _{2} b}\)


rozpisałam to wyrażenie:

\(\displaystyle{ \log_{2}(a+b)=\log _{2}(ab)}\)

\(\displaystyle{ (a+b)=ab}\)

i nie wiem co dalej.

PS. czy płaszczyzna OAB to zwykły układ XOY z inaczej nazwanymi osiami?
Ostatnio zmieniony 8 mar 2010, o 22:56 przez yoana91, łącznie zmieniany 1 raz.

zati61
Użytkownik
Użytkownik
Posty: 656
Rejestracja: 11 gru 2009, o 16:54
Płeć: Mężczyzna
Lokalizacja: aaa
Pomógł: 119 razy

zaznacz zbiór punktów

Post autor: zati61 » 8 mar 2010, o 20:17

PS. czy płaszczyzna OAB to zwykły układ XOY z inaczej nazwanymi osiami?
Tak.
\(\displaystyle{ \log_{a}(a+b)=\log _{2}(ab)}\)
masz różne podstawy, więc nie bardzo można przyrównać argumenty.

Jak już to:
\(\displaystyle{ a+b=ab \wedge a=2}\)
ale to nie wyczerpuje wszystkich rozwiązań
_____________________

\(\displaystyle{ \log_{a}(a+b)=\log _{2}(ab)}\) ta postać jest najważniejsza.
1. podstawy równe, juz zrobilismy
2. podstawy takie, by były 2 różne logarytmy(jeden o podstawie pomiedzy 0;1 a drugi >1).
Warunki: \(\displaystyle{ 0<a<1}\); wtedy korzystajac z tego, ze logarytmu takie maja tylko jeden punkt wspolny dla argumentu \(\displaystyle{ x=1}\), wiec: \(\displaystyle{ a+b=ab=1}\)- dostajemy niestety sprzeczność; więc przypadek odpada.

A więc widać, że to (1) to jedyna możliwość.

yoana91
Użytkownik
Użytkownik
Posty: 357
Rejestracja: 17 mar 2009, o 20:26
Płeć: Kobieta
Podziękował: 59 razy
Pomógł: 1 raz

zaznacz zbiór punktów

Post autor: yoana91 » 8 mar 2010, o 22:58

zati61 pisze: masz różne podstawy, więc nie bardzo można przyrównać argumenty.
przepraszam! błąd w zapisie, już poprawiłam, podstawy są takie same. jak zatem rozwiązać to zadanie?

Awatar użytkownika
fon_nojman
Użytkownik
Użytkownik
Posty: 1599
Rejestracja: 13 cze 2009, o 22:26
Płeć: Mężczyzna
Lokalizacja: Łódź
Podziękował: 68 razy
Pomógł: 255 razy

zaznacz zbiór punktów

Post autor: fon_nojman » 9 mar 2010, o 18:11

oab to zwykły układ oxy tylko inne nazwy współrzędnych (osi wspólrzędnych).

\(\displaystyle{ a+b=ab \Leftrightarrow a=b(a-1) \Leftrightarrow (widac\ ze\ dla\ a=1\ rownosc\ nie\ zachodzi)\ b=\frac{a}{a-1}}\)

yoana91
Użytkownik
Użytkownik
Posty: 357
Rejestracja: 17 mar 2009, o 20:26
Płeć: Kobieta
Podziękował: 59 razy
Pomógł: 1 raz

zaznacz zbiór punktów

Post autor: yoana91 » 9 mar 2010, o 23:12

czyli mam narysować funkcję homograficzną: \(\displaystyle{ b=\frac{a}{a-1}}\) ?:)

Awatar użytkownika
fon_nojman
Użytkownik
Użytkownik
Posty: 1599
Rejestracja: 13 cze 2009, o 22:26
Płeć: Mężczyzna
Lokalizacja: Łódź
Podziękował: 68 razy
Pomógł: 255 razy

zaznacz zbiór punktów

Post autor: fon_nojman » 10 mar 2010, o 10:57

dokładnie tak

ODPOWIEDZ