Dobór testu do sytuacji w zadaniu - prośba o sprawdzenie mojego rozumowania

Procesy stochastyczne. Sposoby racjonalizowania wielkich ilości informacji. Matematyka w naukach społecznych.
pamparampampam
Użytkownik
Użytkownik
Posty: 1
Rejestracja: 18 maja 2020, o 15:33
Płeć: Mężczyzna
wiek: 22

Dobór testu do sytuacji w zadaniu - prośba o sprawdzenie mojego rozumowania

Post autor: pamparampampam » 18 maja 2020, o 16:07

Witam, chciałbym Was prosić o sprawdzenie, czy dobrze odczytałem treść zadania i zaproponowałem rozwiązanie...

Zapytano 1408 pacjentów-respondentów, którzy dokonywali oceny odczuwanego poziomu bólu (w skali od 1 do 5) po poddaniu 2 rodzajom terapii. Zakładajac,że wariancje w populacjach T1 i T2 sa równe sprawdzic, czy przecietny odczuwany poziom bólu rózni sie w obu grupach. Jakie dodatkowe załozenie nalezy przyjac?
T1:
średnia: 3,5
odchylenie standardowe: 1,517
liczebność: 775

T2:
średnia: 4
odchylenie standardowe: 1,095
liczebność: 633

Moje rozwiązanie:
Należy dodatkowo założyć, że zmienna w obu populacjach ma rozkład normalny.
Skoro Wariancje w populacjach T1 i T2 są równe, to też odchylenia standardowe, zatem używamy Testu istotności dla dwóch średnich dla nieznanych, ale takich samych odchyleń standardowych.

\(\displaystyle{ H0: m_{1} = m_{2}}\)
\(\displaystyle{ H1: m_{1} \neq m_{2}}\)

wartość statystyki t:

\(\displaystyle{ {\displaystyle t={\frac {{\overline {x_{1}}}-{\overline {x_{2}}}}{\sqrt {{\frac {(n_{1}-1)s_{1}^{2}+(n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2}}({\frac {1}{n_{1}}}+{\frac {1}{n_{2}}})}}},}}\)

t = -6,95

Dla poziomu istotności 0,05 wartość krytyczna to 1,64, więc skoro moduł z t jest większy od wartości krytycznej to odrzucamy hipotezę zerową i uznajemy, że przeciętny odczuwany poziom bólu różni się w obu grupach.

Czy dobrze zbudowałem zadanie? Będę bardzo wdzięczny za potwierdzenie mojego toku rozumowania lub pokazanie, gdzie popełniłem błąd.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

ODPOWIEDZ