Martyngał

Definicja klasyczna. Prawdopodobieństwo warunkowe i całkowite. Zmienne losowe i ich parametry. Niezależność. Prawa wielkich liczb oraz centralne twierdzenia graniczne i ich zastosowania.
degel123
Użytkownik
Użytkownik
Posty: 193
Rejestracja: 23 lis 2014, o 19:35
Płeć: Mężczyzna
Lokalizacja: polska
Podziękował: 64 razy

Martyngał

Post autor: degel123 » 7 gru 2019, o 22:16

Mam takie zadanie: \(\displaystyle{ X_1,X_2,...}\) niezależne zmienne losowe o identycznym rozkładzie o wartości oczekiwanej \(\displaystyle{ 0}\) i skończonej wariancji \(\displaystyle{ \mathbb{E}(X_i^2)}\), \(\displaystyle{ S_n=X_1+...+X_n}\)
Najpierw miałem pokazać że proces \(\displaystyle{ S_n^2-n
\mathbb{E}(X_1^2)}\)
jest martyngałem co już zrobiłem. Dalej mam pytanie czy proces \(\displaystyle{ S_n^3}\) jest martyngałem i jaka postac komensacji \(\displaystyle{ A_n}\) nalezy przyjac zeby proces \(\displaystyle{ S_n^3-A_n}\) był martyngałem? I co gdy \(\displaystyle{ S_n^3}\) zastapimy \(\displaystyle{ S_n^m}\). Niestety przy potedze \(\displaystyle{ 3}\) i wyzej nie mam pojecia jak to zrobic :(
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

ODPOWIEDZ