rzuty monetami

Definicja klasyczna. Prawdopodobieństwo warunkowe i całkowite. Zmienne losowe i ich parametry. Niezależność. Prawa wielkich liczb oraz centralne twierdzenia graniczne i ich zastosowania.
doreh
Użytkownik
Użytkownik
Posty: 54
Rejestracja: 7 sie 2009, o 14:55
Płeć: Kobieta
Podziękował: 29 razy

rzuty monetami

Post autor: doreh » 12 sie 2009, o 14:28

Rzucamy 6 razy dwiema różnymi monetami. Oblicz:
a prwdopodobieństwo, ze co najwyzej 2 razzy uzyskamy na jednej monecie reszke, a na drugiej orła- tu wyszło mi zgodnie z odp.: 11/32 (schemat bernoulliego)
b najbardziej prawdopodobną liczbę rzutów, w których uzyskamy na jednej monecie reszkę, a na drugiej orła;
w odp.: (n+1)p=7/2 i napisano: onacza to, że najbardziej prawdopodbną liczbą sukcesów jest 7/2 (część całkowita)czyli 3(a więc każda inna liczba sukcesów ma prawdopodobieństwo mniejsze od 11/32). Dlaczego 3 i skąd wynika wzór (n+1)p=7/2? Czy ktoś jest mi w stanie to wytłumaczyć? Jak rozwiązać te zadanie

Awatar użytkownika
kp1311
Użytkownik
Użytkownik
Posty: 475
Rejestracja: 20 maja 2009, o 15:06
Płeć: Mężczyzna
Lokalizacja: Zarzecze
Podziękował: 36 razy
Pomógł: 49 razy

rzuty monetami

Post autor: kp1311 » 14 sie 2009, o 11:37

Ja to widzę tak:
mamy dwie monety, więc istnieją cztery możliwości w jednym rzucie:
o,o
o,r
r,o
r,r
o-orzeł,r- reszka

zatem p. sukcesu w jednym rzucie to 2/4= 1/2.
i teraz używamy wzoru (n+1)p = (6 + 1)/2 = 7/2

i bierzemy część całkowitą czyli 3.

doreh
Użytkownik
Użytkownik
Posty: 54
Rejestracja: 7 sie 2009, o 14:55
Płeć: Kobieta
Podziękował: 29 razy

rzuty monetami

Post autor: doreh » 17 sie 2009, o 18:44

Dzięki =)
A czy mógłbyś mi wyjaśnić skąd wziął się wzór (n+1)p ?-- 18 sie 2009, o 15:31 --Czy ktoś wie ??

Awatar użytkownika
Janek Kos
Użytkownik
Użytkownik
Posty: 417
Rejestracja: 20 lis 2005, o 22:47
Płeć: Mężczyzna
Lokalizacja: Wrocław
Pomógł: 98 razy

rzuty monetami

Post autor: Janek Kos » 20 sie 2009, o 14:13

Wykresem funkcji prawdop. rozkl. dwum. jest gorka widoczna w zalaczonym linku:
http://pl.wikipedia.org/wiki/Rozk%C5%82ad_dwumianowy. Gdy liczysz najbardziej prawdopodobna wartosc, to chcesz znalezc punkt, w ktorym ta gorka osiaga szczyt. Mozna to zrobic badajac przyrosty funkji prawdop. Niech B(k,p,n) bedzie funkcja p-stwa zalezna od k (p i n sa ustalone). Zeby policzyc to maksimum, musisz rozwiazac rownanie B(k+1,p,n)/B(k,p,n)=1 . Chodzi o to, ze ten ulamek najpierw bedzie rosl, a pozniej bedzie malal, a ty chcesz znalez pkt. przesilenia. Podobne zadania pojawialy sie juz na tym forum - w dziale statystyka rozwiazywalem niewiele sie rozniace zadanie o rybach.

ODPOWIEDZ