rzut kostką do gry

Definicja klasyczna. Prawdopodobieństwo warunkowe i całkowite. Zmienne losowe i ich parametry. Niezależność. Prawa wielkich liczb oraz centralne twierdzenia graniczne i ich zastosowania.
doreh
Użytkownik
Użytkownik
Posty: 54
Rejestracja: 7 sie 2009, o 14:55
Płeć: Kobieta
Podziękował: 29 razy

rzut kostką do gry

Post autor: doreh » 10 sie 2009, o 14:31

Dane są zdarzenie A- w sześciu rzutach kostką każda liczba oczek (1,2,3,4,5,6) wypadnie dokładnie jeden raz oraz zdarzenie B- w siedmiu rzutach kostką każda liczba oczek (1,2,3,4,5,6) wypadnie przynajmniej jeden raz. Wykonując odpowiednie obliczenia, wykaż, że prawdopodobieństwo zdarzenia B jest o 250% większe od prawdopodobieństwa zdarzenia A.

W modelu odp.:
zdarzenie A
omega to \(\displaystyle{ 6^{6}}\) (rozumiem, że to wariacja z powtórzeniami)
A=6! (permutacja :?: dlaczego? stawiałam na wariację bez powtórzeń- w zadaniu: 'liczba wypadnie dokładnie jeden raz') :?:

zdarzenie B
omega \(\displaystyle{ 6^{7}}\)
B \(\displaystyle{ \frac{7!}{2!}6}\) <= czy ktoś może wyjaśnić skąd się to cudo wzięło ? :?:

KPR
Użytkownik
Użytkownik
Posty: 254
Rejestracja: 11 lip 2009, o 20:00
Płeć: Mężczyzna
Lokalizacja: Łódź
Podziękował: 1 raz
Pomógł: 31 razy

rzut kostką do gry

Post autor: KPR » 10 sie 2009, o 16:05

W zdarzeniu A masz permutację, bo na 6! sposobów możesz rozmieścić to 6 różnych wyników.

Awatar użytkownika
Janek Kos
Użytkownik
Użytkownik
Posty: 417
Rejestracja: 20 lis 2005, o 22:47
Płeć: Mężczyzna
Lokalizacja: Wrocław
Pomógł: 98 razy

rzut kostką do gry

Post autor: Janek Kos » 18 sie 2009, o 20:53

[quote="doreh"]
zdarzenie A
omega to \(\displaystyle{ 6^{6}}\) (rozumiem, że to wariacja z powtórzeniami)
A=6! (permutacja :?: dlaczego? stawiałam na wariację bez powtórzeń- w zadaniu: 'liczba wypadnie dokładnie jeden raz') :?:
[/quote]

Owszem, jest to wariancja bez powtorzen - tyle, ze jest to 6-cio wyrazowa wariancja bez powtorzen zbioru 6-cio elementowego, czyli permutacja. http://www.math.edu.pl/wariacje

[quote="doreh"]
zdarzenie B
omega \(\displaystyle{ 6^{7}}\)
B <= czy ktoś może wyjaśnić skąd się to cudo wzięło ? [/quote]

Omega, to ta sama wariancja z powtorzeniami, zas zdarzenie B najlepiej odczytywac tak:

Wiemy, ze wszystkie oczka musza sie pojawic, przy czym jedno oczko wystapi 2 razy, bo rzucamy 7 razy. Zeby zadne oczko nie bylo pokrzywdzone, musimy wylosowac to, ktore pojawi sie 2 razy. Mozemy to zrobic na 6 sposobow, stad ta szostka we wzorze. Teraz gdy mamy juz 7 elementow: {1,2,3,4,5,6} i nasze, uczciwie wylosowane, dodatkowe oczko, ustawiamy cyferki w rzadku, czyli kolejnosci w jakiej sie pojawialy. Mozemy to zrobic na tyle sposobow, ile jest permutacji z powtorzeniami tego 7-mio elemntowego zbioru, czyli:
\(\displaystyle{ \frac{7!}{1!\cdot 1!\cdot 1!\cdot 1!\cdot 1!\cdot 1!\cdot 2!}}\)

czyli ostatecznie moc zdarzenia B wyniesie:
\(\displaystyle{ \frac{7!}{1!\cdot 1!\cdot 1!\cdot 1!\cdot 1!\cdot 1!\cdot 2!}\cdot 6}\)

doreh
Użytkownik
Użytkownik
Posty: 54
Rejestracja: 7 sie 2009, o 14:55
Płeć: Kobieta
Podziękował: 29 razy

rzut kostką do gry

Post autor: doreh » 19 sie 2009, o 19:27

Dziękuję
Mam jeszcze jedną małą prośbę: 135919.htm ...
Nie mogę dojść skąd w rachunku prawdopodobieństwa wziął się wzór (n+1)p a nie n*p ...

ODPOWIEDZ