Dowód właściwości relacji podzielności

Permutacje. Kombinacje. Wariacje. Rozmieszczanie kul w urnach. Silnie i symbole Newtona. Przeliczanie zbiorów. Funkcje tworzące. Teoria grafów.
wixy0
Użytkownik
Użytkownik
Posty: 13
Rejestracja: 16 kwie 2020, o 09:52
Płeć: Mężczyzna
wiek: 15
Podziękował: 5 razy

Dowód właściwości relacji podzielności

Post autor: wixy0 » 2 maja 2020, o 13:23

Mam do udowodnienia taką właściwość relacji podzielności
\(\displaystyle{ \forall m, n, u, v \in Z : \left( m \mid n \wedge u \mid v \Rightarrow m \cdot u \mid n \cdot v \right) }\)

Zacząłem od zapisania poprzednika i następnika implikacji w takiej postaci:

\(\displaystyle{ \exists r, s \in Z: n = r \cdot m \wedge v = s \cdot u}\)
\(\displaystyle{ \exists t \in Z: n \cdot v = t \cdot m \cdot u }\)

I teraz nie wiem co dalej z tym zrobić.
Ostatnio zmieniony 2 maja 2020, o 14:33 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

a4karo
Użytkownik
Użytkownik
Posty: 18116
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 5 razy
Pomógł: 3060 razy

Re: Dowód właściwości relacji podzielności

Post autor: a4karo » 2 maja 2020, o 13:26

Teraz z poprzednika wywnioskuj następnik

wixy0
Użytkownik
Użytkownik
Posty: 13
Rejestracja: 16 kwie 2020, o 09:52
Płeć: Mężczyzna
wiek: 15
Podziękował: 5 razy

Re: Dowód właściwości relacji podzielności

Post autor: wixy0 » 2 maja 2020, o 13:37

Jedyne co mi przychodzi do głowy to podstawienie zależności z poprzednika do następnika.

\(\displaystyle{ r \cdot m \cdot s \cdot u=t \cdot m \cdot u}\)
\(\displaystyle{ r \cdot s = t }\)

No i to w sumie prawda bo iloczyn liczb całkowitych również jest liczbą całkowitą, tylko mam wrażenie, że to nie wystarczy.

a4karo
Użytkownik
Użytkownik
Posty: 18116
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 5 razy
Pomógł: 3060 razy

Re: Dowód właściwości relacji podzielności

Post autor: a4karo » 2 maja 2020, o 13:59

Akurat wystarczy, tylko napisz to w ten sposób, żeby z poradnika uzyskać następnik, a nie bierz się za to od obu stron naraz

Dodano po 24 sekundach:
To jest naprawdę bardzo proste

wixy0
Użytkownik
Użytkownik
Posty: 13
Rejestracja: 16 kwie 2020, o 09:52
Płeć: Mężczyzna
wiek: 15
Podziękował: 5 razy

Re: Dowód właściwości relacji podzielności

Post autor: wixy0 » 2 maja 2020, o 15:31

Poprzednik mogę zapisać w postaci układu równań i pomnożyć oba równania stronami:

\(\displaystyle{ \begin{cases} n = r \cdot m \\ v = s \cdot u \end{cases} }\)
\(\displaystyle{ n \cdot v = r \cdot m \cdot s \cdot u}\)

I teraz powinienem porównać to co otrzymałem z tego mnożenia z tym co mam w następniku?

Jan Kraszewski
Administrator
Administrator
Posty: 26409
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4417 razy

Re: Dowód właściwości relacji podzielności

Post autor: Jan Kraszewski » 2 maja 2020, o 15:42

Powinieneś przede wszystkim napisać to tak, żeby miało ręce i nogi:

Ustalmy dowolne liczby całkowite \(\displaystyle{ m,n,u,v}\) takie, że \(\displaystyle{ m\mid n}\) i \(\displaystyle{ u\mid v}\). Z definicji podzielności oznacza to, że istnieją liczby całkowite \(\displaystyle{ r,s}\) takie, że \(\displaystyle{ n=m\cdot r}\) i \(\displaystyle{ v=u\cdot s}\). Ale wówczas \(\displaystyle{ n\cdot v=(m\cdot r)\cdot (u\cdot s)=(m\cdot u)\cdot (r\cdot s)}\). Ale \(\displaystyle{ r\cdot s}\) jest liczbą całkowitą, zatem z def. podzielności mamy \(\displaystyle{ m\cdot u\mid n\cdot v}\), czego należało dowieść.

Nie chodzi tylko o to, co gdzie wstawić. Chodzi o to, by w czytelny sposób zapisać ciąg logiczny.

JK

ODPOWIEDZ