Ile liczb 5-cyfrowych z cyfr liczby 75226522?

Permutacje. Kombinacje. Wariacje. Rozmieszczanie kul w urnach. Silnie i symbole Newtona. Przeliczanie zbiorów. Funkcje tworzące. Teoria grafów.
globi
Użytkownik
Użytkownik
Posty: 17
Rejestracja: 13 lis 2005, o 17:36
Płeć: Mężczyzna
Lokalizacja: Warszawa

Ile liczb 5-cyfrowych z cyfr liczby 75226522?

Post autor: globi »

Ile liczb 5-cyfrowych można utwożyć z cyfr liczby 75226522?

Prosiłbym o przedstawienie toku rozumowania.
Awatar użytkownika
Emiel Regis
Użytkownik
Użytkownik
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

Ile liczb 5-cyfrowych z cyfr liczby 75226522?

Post autor: Emiel Regis »

Moim zdaniem będą tutaj wariacje z powtórzeniami, gdyż są tylko 4 różne cyfry w naszej liczbie.
A skoro z powtórzeniami to będziemy mieli poprostu \(\displaystyle{ W^{5}_{4}=4^{5}}\)
globi
Użytkownik
Użytkownik
Posty: 17
Rejestracja: 13 lis 2005, o 17:36
Płeć: Mężczyzna
Lokalizacja: Warszawa

Ile liczb 5-cyfrowych z cyfr liczby 75226522?

Post autor: globi »

Raczej nie, ponieważ z treści wnioskuję, że cyfra '2' może wystąpić od 0 do 4 razy, cyfra '7' 0 lub 1 raz, cyfra '5' od 0 do 2 razy, itd..

A poprawnym wynikiem jest: 265. Tylko nie wiem jak go uzyskać :)
Awatar użytkownika
Emiel Regis
Użytkownik
Użytkownik
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

Ile liczb 5-cyfrowych z cyfr liczby 75226522?

Post autor: Emiel Regis »

Słusznie, uprościłem sobie zbytnio. Jedyne co mi przychodzi na myśl to rozwiązanie gdyby nas pytali o liczby ośmiocyfrowe... Wtedy mamy \(\displaystyle{ \frac{8!}{2!*4!}}\) (z permutacji), moze Tobie to coś podpowie, ja dalej nie mam pomysłu.
wojteka
Użytkownik
Użytkownik
Posty: 34
Rejestracja: 18 wrz 2004, o 22:25

Ile liczb 5-cyfrowych z cyfr liczby 75226522?

Post autor: wojteka »

taki maly pomysl mam ale to rozwiazanie jest "brutalforcem" a nie jakos tak logicznie.
Rozpatrzmy liczbe postaci:
2222x
222xx
225xx
552xx
i przypadek
22255
gdzie x nie sa 2 ani 5
I teraz dla kazdego przypadku liczymy ilosc mozliwosci. potem:
ilosc mozliwosci*(ilosc roznych liczb wynikajaca z permutacji) robimy sume wsdzysktich przypadkow i juz. Ale pewnie jest jakis krotszy sposob na rozwiazanie.
MikizAfryki
Użytkownik
Użytkownik
Posty: 5
Rejestracja: 26 lut 2022, o 23:13
Płeć: Mężczyzna
wiek: 17
Podziękował: 3 razy

Re: Ile liczb 5-cyfrowych z cyfr liczby 75226522?

Post autor: MikizAfryki »

Temat stary ale może przyszłym czytelnikom się przyda.

Możemy zrobić to zadanie prościej.

1. Przypadek w którym mamy \(\displaystyle{ 7}\) i \(\displaystyle{ 6}\). Wybieramy im miejsca a następnie wypełniamy puste przestrzenie wszystkimi 3 miejscowymi kombinacjami 2 piątek i 4 dwójek (łatwo je wypisać i policzyć)
Wiec mamy : \(\displaystyle{ 5\cdot 4\cdot 7=140.}\)

2. Teraz bierzemy przypadki w których mamy albo \(\displaystyle{ 6}\) albo \(\displaystyle{ 7}\).
Zabieramy się do liczenia kombinacji 4 miejscowych, tym razem jest ich \(\displaystyle{ 11}\). Wiec mamy
\(\displaystyle{ 5\cdot11+5\cdot11=110.}\)

3. Liczymy 5 miejscowe kombinacje dwójek i piątek:
jest ich \(\displaystyle{ 15}\)

Sumujemy i otrzymujemy \(\displaystyle{ 265}\).
Ostatnio zmieniony 16 sie 2022, o 18:44 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Brak LaTeX-a. Proszę zapoznać się z instrukcją: http://matematyka.pl/latex.htm .
ODPOWIEDZ