Objętość odcinka kuli

Sześciany. Wielościany. Kule. Inne bryły. Zadania i twierdzenia z nimi związane. Geometria rzutowa w przestrzeni.
Dilectus
Użytkownik
Użytkownik
Posty: 2483
Rejestracja: 1 gru 2012, o 00:07
Płeć: Mężczyzna
Lokalizacja: Warszawa

Objętość odcinka kuli

Post autor: Dilectus » 22 sie 2019, o 21:20

Ostatnio, rozwiązując pewien problem, musiałem znaleźć objętość odcinka kuli. Niewiele myśląc, wygooglałem to: https://pl.wikipedia.org/wiki/Odcinek_kuli. Problem rozwiązałem, stosując wzór zawarty w tym linku. Ale nijak nie potrafię go wyprowadzić. Pomóżcie.

kruszewski
Użytkownik
Użytkownik
Posty: 6289
Rejestracja: 7 gru 2010, o 16:50
Płeć: Mężczyzna
Lokalizacja: Staszów

Re: Objętość odcinka kuli

Post autor: kruszewski » 22 sie 2019, o 22:24

Czy twierdzenie Pappusa - Guldina nie może być "użyte"?

Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 8465
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław

Re: Objętość odcinka kuli

Post autor: Dasio11 » 22 sie 2019, o 22:41

Wskazówka: odcinek kuli jest różnicą odpowiadającego mu wycinka kuli i stożka.

Awatar użytkownika
karolex123
Użytkownik
Użytkownik
Posty: 721
Rejestracja: 22 gru 2012, o 11:01
Płeć: Mężczyzna
Lokalizacja: somewhere

Re: Objętość odcinka kuli

Post autor: karolex123 » 23 sie 2019, o 00:00

Możemy pocałkować:

\(\displaystyle{ V= \int\limits_{r-h}^r \int_{B \left( \sqrt{r^2-z^2} \right) }1 dxdydz= \int\limits_{r-h}^r \pi \left( r^2-z^2 \right) dz=\pi r^2 h- \frac{1}{3} \pi\left( r^3- \left( r-h \right) ^3 \right)=\\=\pi h^2 \cdot \frac{3r-h}{3},}\)

przy czym \(\displaystyle{ B \left( \sqrt{r^2-z_0 ^2} \right)}\) oznacza dysk o promieniu \(\displaystyle{ \sqrt{r^2-z_0 ^2}}\) dla \(\displaystyle{ z_0 \in \left( r-h,r\right)}\) (przyjąłem oznaczeniu zgodnie z artykułem z wikipedii).
Ostatnio zmieniony 23 sie 2019, o 00:23 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

Dilectus
Użytkownik
Użytkownik
Posty: 2483
Rejestracja: 1 gru 2012, o 00:07
Płeć: Mężczyzna
Lokalizacja: Warszawa

Re: Objętość odcinka kuli

Post autor: Dilectus » 23 sie 2019, o 16:26

karolex123, a bez całkowania się nie da?

ODPOWIEDZ