Kąty w ostrosłupie

Sześciany. Wielościany. Kule. Inne bryły. Zadania i twierdzenia z nimi związane. Geometria rzutowa w przestrzeni.
Marus0
Użytkownik
Użytkownik
Posty: 38
Rejestracja: 27 mar 2017, o 20:37
Płeć: Mężczyzna

Kąty w ostrosłupie

Post autor: Marus0 » 15 mar 2019, o 19:45

W ostrosłupie o podstawie w kształcie trapezu występują kąty alfa między bokami, a podstawą. Pytanie brzmi, czy płaszczyzna wyznaczona przez dwa kąty do krawędzi podstaw (tych równoległych), konkretnie to wysokości tych trójkątów i wysokość trapezu tworzą trójkąt równoramienny?

piasek101
Użytkownik
Użytkownik
Posty: 22948
Rejestracja: 8 kwie 2008, o 22:04
Płeć: Mężczyzna
Lokalizacja: piaski

Re: Kąty w ostrosłupie

Post autor: piasek101 » 15 mar 2019, o 20:44

Treść jaką napisałeś taka sobie.

Czy w trójkącie o dwóch jednakowych kątach występują dwa jednakowe boki ?

Marus0
Użytkownik
Użytkownik
Posty: 38
Rejestracja: 27 mar 2017, o 20:37
Płeć: Mężczyzna

Re: Kąty w ostrosłupie

Post autor: Marus0 » 15 mar 2019, o 21:34

Wydaje się, że tak. Ale źle postawiłem pytanie.

Czy wysokości tych trójkątów (boków ostrosłupa o podstawach równoległych do siebie) nachylone pod kątem alfa do podstawy, we wspólnym trójkącie razem z wysokością (właśnie czy to będzie wysokość? ) trapezu dalej będą miały te same kąty alfa?

piasek101
Użytkownik
Użytkownik
Posty: 22948
Rejestracja: 8 kwie 2008, o 22:04
Płeć: Mężczyzna
Lokalizacja: piaski

Re: Kąty w ostrosłupie

Post autor: piasek101 » 15 mar 2019, o 21:54

Tamto (coś pisałem o treści) i to pytanie (tu podobnie) nie są konkretne, więc (przynajmniej mi) trudno na nie odpowiedzieć.
Trójkąt ostrokątny jaki narysowałeś po prawej jest równoramienny.

Najlepiej podaj (dokładną) treść zadania.

Marus0
Użytkownik
Użytkownik
Posty: 38
Rejestracja: 27 mar 2017, o 20:37
Płeć: Mężczyzna

Re: Kąty w ostrosłupie

Post autor: Marus0 » 15 mar 2019, o 22:21

Wyczuwam nutkę ironii.

Treści zadania nie znam (dokładnie) i nie jest ona potrzebna, aby odpowiedzieć na moje pytanie. Przepraszam, jeżeli poprzednie odpowiedzi nie były czytelne.

Jest to ostrosłup czworokątny z trapezem w podstawie. Nie jest to trapez równoramienny. Ściany boczne ostrosłupa tworzą z podstawą kąt alfa. Czy na tej podstawie można powiedzieć, że trójkąt złożony z wysokości ścian bocznych i połączenia ich na podstawie ostrosłupa jest trójkątem równoramiennym o tych samych kątach alfa?


piasek101
Użytkownik
Użytkownik
Posty: 22948
Rejestracja: 8 kwie 2008, o 22:04
Płeć: Mężczyzna
Lokalizacja: piaski

Re: Kąty w ostrosłupie

Post autor: piasek101 » 15 mar 2019, o 22:33

Nie było czytelne, stąd też nic nie wiem o żadnej ironii.

Co do zadania - teraz jest zdecydowanie lepsze - nie możemy przyjmować równoramienności trójkąta utworzonego przez wysokości (tych) ścian bocznych. A tym bardziej, że którykolwiek jego kąt to \(\displaystyle{ \alpha}\).

[edit] A dzisiaj (16.03) widzę to inaczej. Spodek wysokości leży w równej odległości od podstaw trapezu i trójkąt: wysokość ściany(opartej na jednej z podstaw trapezu); wysokość przeciwległej ściany bocznej; odcinek łączący te wysokości - jest równoramienny.

ODPOWIEDZ