Obliczyć cosinus kąta rozwartego

Wielokąty (n>3). Okręgi. Inne figury płaskie. Zadania i twierdzenia z nimi związane. Geometria rzutowa na płaszczyżnie.
at_new
Użytkownik
Użytkownik
Posty: 42
Rejestracja: 29 lis 2004, o 20:48

Obliczyć cosinus kąta rozwartego

Post autor: at_new »

W półkole o promieniu r wpisano prostokąt o największym polu. Oblicz cosinus kata rozwartego między przekątnymi tego prostokąta.
florek177
Użytkownik
Użytkownik
Posty: 3018
Rejestracja: 23 mar 2005, o 10:26
Płeć: Mężczyzna
Lokalizacja: Gdynia
Podziękował: 2 razy
Pomógł: 322 razy

Obliczyć cosinus kąta rozwartego

Post autor: florek177 »

Mamy:
\(\displaystyle{ \;P=ab\;}\); oraz \(\displaystyle{ \;b^{2}=R^{2}-\frac{a^{2}}{4}\;}\) ; więc \(\displaystyle{ \;P(a)=a\sqrt{R^{2}-\frac{a^{2}}{4} }\;}\); i 0 < a < 2R pochodna \(\displaystyle{ \;P`(a)=0\;}\) dla \(\displaystyle{ a=R{\sqrt{2}}\;}\); więc \(\displaystyle{ b=\frac{R}{2}{\sqrt{2}}\;}\);
a dalej już sprawa prosta.
V3mpire
Użytkownik
Użytkownik
Posty: 15
Rejestracja: 23 kwie 2005, o 18:41
Płeć: Mężczyzna
Lokalizacja: Warszawa
Pomógł: 1 raz

Obliczyć cosinus kąta rozwartego

Post autor: V3mpire »

To chyba nie jest najprostszy sposób, ale pierwszy, który mi się do głowy nasunął...

cz. 1)

Najpierw znajdziemy prostokąt wpisany w półkole o promieniu r posiadający największe pole.
\(\displaystyle{ 0}\)
mamy dwie zmienne, x i h. Uzależniamy jedną od drugiej (z pitagorasa):
\(\displaystyle{ h=\sqrt{r^{2}-x^{2}}}\)
zapiszemy wzór na pole szukanego prostokąta: \(\displaystyle{ P=h2x}\)
zauważamy, że pole to będzie największe \(\displaystyle{ \leftrightarrow}\) iloczyn 'hx' przyjmie największą wartość.
\(\displaystyle{ hx=\sqrt{r^{2}-x^{2}}x=\sqrt{r^{2}x^{2}-x^{4}}}\)
Zauważamy teraz, iż \(\displaystyle{ \sqrt{r^{2}x^{2}-x^{4}}}\) będzie największe \(\displaystyle{ \leftrightarrow \ r^{2}x^{2}-x^{4}}\) będzie największe.
No to mamy prostą funkcję \(\displaystyle{ d(x)=r^{2}x^{2}-x^{4}}\). Szukamy maksimum funkcji (łatwo zauważyć, że są dwa, ale tylko jedno dodatnie).
\(\displaystyle{ d\prime(x)=2r^{2}x-4x^{3}=x(2r^{2}-4x^{2})=2x(r-\sqrt{2}x)(r+\sqrt{2}x)}\)
ekstrema: \(\displaystyle{ d\prime(x)=0\ \leftrightarrow\ 2x(r-\sqrt{2}x)(r+\sqrt{2}x)=0\ \leftrightarrow\ x=\frac{\sqrt{2}r}{2}\ \vee\ x=-\frac{\sqrt{2}r}{2}\ x=0}\)
z założeń, że \(\displaystyle{ x>0}\) mamy: \(\displaystyle{ x=\frac{\sqrt{2}r}{2}}\)
a stąd: \(\displaystyle{ h=\sqrt{r^{2}-x^{2}}=\sqrt{r^{2}-\frac{r^{2}}{2}}=\frac{r}{\sqrt{2}}=\frac{\sqrt{2}r}{2}=x}\)

cz.2

Uff, to teraz już pozostaje tylko obliczyć cosinus alphy.

Zapisujemy wzory na pole i porównujemy:
\(\displaystyle{ P=4(\frac{1}{2}(x\sqrt{5})^{2}sin\alpha)\\P=2xx=2x^{2}\\\\\4(\frac{1}{2}(x\sqrt{5})^{2}sin\alpha)=2x^{2}\ \leftrightarrow\ 10x^{2}sin \alpha=2x^{2} \leftrightarrow\ sin\alpha=\frac{1}{5}}\)
pamiętamy, że \(\displaystyle{ cos\alpha \in (\frac{\Pi}{2};\ \Pi)}\)
obliczamy cos z jedynki trygonometrycznej:
\(\displaystyle{ sin^{2}\alpha+cos^{2}\alpha=1\\cos\alpha=\sqrt{1-sin^{2}\alpha}\\cos\alpha=-\frac{2\sqrt{6}}{5}}\)
i już :)
paulgray
Użytkownik
Użytkownik
Posty: 160
Rejestracja: 23 wrz 2004, o 20:50
Płeć: Mężczyzna
Lokalizacja: AGH-EAIiE
Podziękował: 2 razy
Pomógł: 1 raz

Obliczyć cosinus kąta rozwartego

Post autor: paulgray »

co do tego bym się kłócił:
\(\displaystyle{ P=4(\frac{1}{2}(\frac{x\sqrt{10}}{4})^{2}\cdot \sin )}\)
a poza tym prościej i szybciej, z tw cosinusów:
\(\displaystyle{ (\frac{r\sqrt{2}}{2})^{2}=2\cdot (\frac{r\sqrt{10}}{4}-2\cdot (\frac{r\sqrt{10}}{4})^{2}\cdot \cos \\\cos = -\frac{3}{5}}\)
ODPOWIEDZ