Trapez równoramienny (kąt przecięcia przekątnych)

Wielokąty (n>3). Okręgi. Inne figury płaskie. Zadania i twierdzenia z nimi związane. Geometria rzutowa na płaszczyżnie.
offtyper
Użytkownik
Użytkownik
Posty: 31
Rejestracja: 19 lis 2010, o 22:08
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 9 razy

Trapez równoramienny (kąt przecięcia przekątnych)

Post autor: offtyper » 16 sty 2012, o 20:27

W trapezie równoramiennym ABCD, dane są: kąt DAB = \(\displaystyle{ \frac{ \pi }{3}}\), |BD| = 14 (przekatna e) , \(\displaystyle{ \frac{|AB|}{AD} = \frac{8}{5}}\)

Oblicz: |AD|, |AB|, |CD| i kąt przecięcia przekątnych

Obiczyłem pierwsze trzy z powyższych: c=10, a=16, b=6, ale nie potrafię wyznaczyć tego kąta. Proszę o pomoc.
Dodam, że odpowiedź to \(\displaystyle{ arccos \frac{-23}{98}}\)

P.S. W zadaniu http://forum.zadania.info/viewtopic.php?f=20&t=24054 po wyliczeniu pola wychodzi mi \(\displaystyle{ \frac{2mn}{sin \alpha }}\), według odp. powinno być zamiast 2 w liczniku: 4. Czy mam dobrze, czy może zrobiłem błąd?

Pozdrawiam,
offtyper.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Inkwizytor
Użytkownik
Użytkownik
Posty: 4105
Rejestracja: 16 maja 2009, o 15:08
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 1 raz
Pomógł: 427 razy

Trapez równoramienny (kąt przecięcia przekątnych)

Post autor: Inkwizytor » 16 sty 2012, o 20:39

To może takie podejście:
- mając długości boków możesz znaleźć wysokość w trapezie
- możesz znaleźć pole trójkąta ABC ze wzoru \(\displaystyle{ \frac{|AB| \cdot h}{2}}\)
- następnie ten fakt oraz znajomość długości przekątnej wykorzystaj do znalezienia sinusa kąta CAB
- dzięki temu że mamy trapez równoramienny znalezienie kąta przecięcia przekątnych już nie stanowi problemu

Oczywiście krócej pisząc sinus nachylenia przekątnej do dłuższej podstawy to po prostu \(\displaystyle{ \frac{h}{|AC|}}\)

offtyper
Użytkownik
Użytkownik
Posty: 31
Rejestracja: 19 lis 2010, o 22:08
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 9 razy

Trapez równoramienny (kąt przecięcia przekątnych)

Post autor: offtyper » 16 sty 2012, o 22:02

Wielkie dzięki za pomoc.
Doszedłem do ostatniego punktu. Jak znaleźć ten kąt przecięcia?
Mam trójkąt równoramienny, podstawę a = 16, kąt beta (ramię do podstawy) = arcsin(5pi/12) i nie wiem co dalej, jak wyliczyć kąt wyznaczony przez ramiona trójkąta?

Awatar użytkownika
Inkwizytor
Użytkownik
Użytkownik
Posty: 4105
Rejestracja: 16 maja 2009, o 15:08
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 1 raz
Pomógł: 427 razy

Trapez równoramienny (kąt przecięcia przekątnych)

Post autor: Inkwizytor » 17 sty 2012, o 00:10

Niech punkt E oznacza punkt przecięcia się przekątnych.
Szukasz \(\displaystyle{ \angle AEB}\) oznaczmy go jako \(\displaystyle{ \beta}\).
\(\displaystyle{ \beta = 180^o - 2 \alpha}\)
Skoro znasz \(\displaystyle{ \sin{\alpha}}\) to bez trudu znajdziesz np.: \(\displaystyle{ \sin \beta}\)

ODPOWIEDZ