Koło 3x o większej powierzchni

Dział poświęcony konstrukcjom platońskim i nie tylko...
Brombal
Użytkownik
Użytkownik
Posty: 225
Rejestracja: 1 gru 2015, o 21:49
Płeć: Mężczyzna
Lokalizacja: Wrocław

Koło 3x o większej powierzchni

Post autor: Brombal » 11 wrz 2019, o 10:12

Wymyśliłem pewne zadanie oraz jego rozwiązanie.
Za pomocą jedynie cyrkla i linijki.
Narysuj koło następnie koło o powierzchni 3 x większej od koła pierwszego.
Być może rozwiązanie jest powszechnie znane, ale spróbować nie zawadzi.
Pozdrawiam ;-)

Brombal
Użytkownik
Użytkownik
Posty: 225
Rejestracja: 1 gru 2015, o 21:49
Płeć: Mężczyzna
Lokalizacja: Wrocław

Re: Koło 3x o większej powierzchni

Post autor: Brombal » 11 wrz 2019, o 10:28

Wydaje się, że pospieszyłem się.
Proponuję dodatkowo zadanie do wykonania za pomocą cyrkla i linijki.
Narysuj dwa dowolne koła następnie koło równie sumie powierzchni tych kół.

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 14146
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Wrocław

Re: Koło 3x o większej powierzchni

Post autor: Premislav » 11 wrz 2019, o 10:36

Niech promień koła ma długość \(r\). Wybieramy sobie dowolną średnicę tego koła, ma ona długość $$2r$$, budujemy trójkąt równoboczny o boku długości tej średnicy, wysokość tego trójkąta ma długość $$\frac{2r\sqrt{3}}{2}=r\sqrt{3}$$. W ten sposób mamy promień żądanego koła.

Drugie: niech te koła mają promienie \(r_1, \ r_2\) odpowiednio. Rysujemy je tak, by były współśrodkowe i zaznaczamy promienie tak, by tworzyły kąt prosty. Utworzony trójkąt prostokątny ma przeciwprostokątną długości \(\sqrt{r_1^2+r_2^2}\), więc pole koła, którego promieniem jest ta przeciwprostokątna, wynosi \(\pi\left(\sqrt{r_1^2+r_2^2}\right)^2=\pi r_1^2+\pi r_2^2\)

Brombal
Użytkownik
Użytkownik
Posty: 225
Rejestracja: 1 gru 2015, o 21:49
Płeć: Mężczyzna
Lokalizacja: Wrocław

Re: Koło 3x o większej powierzchni

Post autor: Brombal » 11 wrz 2019, o 10:51

faktycznie za proste ;-) (robię nieco inaczej) Wykorzystuję twierdzenie Holditcha
A jak byś rozwiązał problem narysowania koła 5x albo 7x większego?
Qrcze - dalej za proste przecież wystarczy sumować pola kół...

ODPOWIEDZ