Podprzestrzen afiniczna

Przestrzenie wektorowe, bazy, liniowa niezależność, macierze.... Formy kwadratowe, twierdzenia o klasyfikacji...
monpor7
Użytkownik
Użytkownik
Posty: 232
Rejestracja: 2 paź 2008, o 09:36
Płeć: Kobieta
Lokalizacja: :)
Podziękował: 50 razy
Pomógł: 1 raz

Podprzestrzen afiniczna

Post autor: monpor7 »

Sprawdzić, czy w przestrzeni afinicznej \(\displaystyle{ \RR^4}\) płaszczyzna \(\displaystyle{ \pi}\) jest równoległa do hiperpłaszczyzny \(\displaystyle{ H}\), jeżeli:

\(\displaystyle{ \pi : \\
11x_1-x_2-3x_3+2x_4=-4 \\
9x_1-x_2 -2x_3+x_4=-3}\)


\(\displaystyle{ H: x_1+x_2-3x_3+4x_4=5}\)
Ostatnio zmieniony 11 maja 2018, o 22:23 przez SlotaWoj, łącznie zmieniany 2 razy.
Powód: Poprawa wiadomości.
Tmkk
Użytkownik
Użytkownik
Posty: 1718
Rejestracja: 15 wrz 2010, o 15:36
Płeć: Mężczyzna
Lokalizacja: Ostrołęka
Podziękował: 59 razy
Pomógł: 501 razy

Podprzestrzen afiniczna

Post autor: Tmkk »

Jakie wektory rozpinają płaszczyznę \(\displaystyle{ \pi}\)? Jak te wektory powinny się mieć do hiperpłaszczyzny \(\displaystyle{ H}\), aby \(\displaystyle{ \pi}\) była równoległa do \(\displaystyle{ H}\)?
monpor7
Użytkownik
Użytkownik
Posty: 232
Rejestracja: 2 paź 2008, o 09:36
Płeć: Kobieta
Lokalizacja: :)
Podziękował: 50 razy
Pomógł: 1 raz

Podprzestrzen afiniczna

Post autor: monpor7 »

Wektory rozpinające płaszczyznę \(\displaystyle{ \pi}\) to:
\(\displaystyle{ \left[ 11,-1,-3,2\right]}\) oraz \(\displaystyle{ \left[ 9,-1,-2,1\right]}\)

Tak?
Ostatnio zmieniony 11 maja 2018, o 22:25 przez SlotaWoj, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości. Odstęp i wielka litera.
Tmkk
Użytkownik
Użytkownik
Posty: 1718
Rejestracja: 15 wrz 2010, o 15:36
Płeć: Mężczyzna
Lokalizacja: Ostrołęka
Podziękował: 59 razy
Pomógł: 501 razy

Podprzestrzen afiniczna

Post autor: Tmkk »

Niezbyt, to akurat są wektory prostopadłe do płaszczyzny \(\displaystyle{ \pi}\).

Musisz znaleźć wektory \(\displaystyle{ v = \left(x_1,x_2,x_3,x_4\right)}\), które spełniają układ równań

\(\displaystyle{ \begin{cases} 11x_1-x_2-3x_3+2x_4=0 \\ 9x_1-x_2 -2x_3+x_4=0 \end{cases}}\)
monpor7
Użytkownik
Użytkownik
Posty: 232
Rejestracja: 2 paź 2008, o 09:36
Płeć: Kobieta
Lokalizacja: :)
Podziękował: 50 razy
Pomógł: 1 raz

Podprzestrzen afiniczna

Post autor: monpor7 »

Otrzymałam cos takiego:

\(\displaystyle{ \begin{cases} x_2=5x_1-x_4 \\ x_3=2x_1+x_4 \end{cases}}\)
Tmkk
Użytkownik
Użytkownik
Posty: 1718
Rejestracja: 15 wrz 2010, o 15:36
Płeć: Mężczyzna
Lokalizacja: Ostrołęka
Podziękował: 59 razy
Pomógł: 501 razy

Podprzestrzen afiniczna

Post autor: Tmkk »

Super. Czyli nasz wektor z \(\displaystyle{ \pi}\) ma postać

\(\displaystyle{ v = \left(x_1,x_2,x_3,x_4\right) = \left(x_1,5x_1-x_4, 2x_1+x_4,x_4\right) = x_1\left(1,5,2,0\right) + x_4\left(0,-1,1,1\right)}\)

Oznacza to, że \(\displaystyle{ \pi}\) jest rozpięta przez wektory \(\displaystyle{ v_1 = \left(1,5,2,0\right)}\) oraz \(\displaystyle{ v_2 = \left(0,-1,1,1\right)}\)

Jak teraz te wektory powinny się mieć do wektorów rozpinających \(\displaystyle{ H}\)?
monpor7
Użytkownik
Użytkownik
Posty: 232
Rejestracja: 2 paź 2008, o 09:36
Płeć: Kobieta
Lokalizacja: :)
Podziękował: 50 razy
Pomógł: 1 raz

Podprzestrzen afiniczna

Post autor: monpor7 »

Hmmm, powinny być równoległe? Tutaj nie wiem do końca.-- 11 maja 2018, 22:32 --Prosze o pomoc jak to dalej zrobic?
Ostatnio zmieniony 11 maja 2018, o 22:27 przez SlotaWoj, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości. Odstęp, polskie i wielke litery, interpunkcja.
Tmkk
Użytkownik
Użytkownik
Posty: 1718
Rejestracja: 15 wrz 2010, o 15:36
Płeć: Mężczyzna
Lokalizacja: Ostrołęka
Podziękował: 59 razy
Pomógł: 501 razy

Re: Podprzestrzen afiniczna

Post autor: Tmkk »

Popatrzmy na prostszy przypadek, który można sobie narysować (i polecam Ci to zrobić, żeby to dobrze zobaczyć).

Mamy prostą \(\displaystyle{ L}\) i płaszczyznę \(\displaystyle{ H}\) w \(\displaystyle{ \mathbb{R}^3}\). Zapomnijmy o jakiś afinicznych przesunięciach tych obiektów, bo w przypadku równoległości to nie ma żadnego znaczenia. Płaszczyzna jest rozpięta przez \(\displaystyle{ 2}\) wektory \(\displaystyle{ v_1,v_2}\), czyli \(\displaystyle{ H = lin\left(v_1,v_2\right)}\), a prosta przez jeden wektor \(\displaystyle{ v_3}\), czyli \(\displaystyle{ L = lin\left(v_3\right)}\). Mam nadzieję, że takie oznaczenia i ich znaczenie nie są Ci obce.

Kiedy ta prosta będzie równoległa do płaszczyzny? Wtedy, kiedy jej kierunek (wektor, który ją wyznacza) będzie również kierunkiem (wektorem), który rozpina płaszczyznę. Krótko mówiąc wtedy, kiedy

\(\displaystyle{ lin\left(v_3\right) \subset lin\left(v_1,v_2\right).}\)

Jak sprawdzić ten warunek? Możemy po prostu sprawdzić, czy każdy wektor z prostej (czyli \(\displaystyle{ v_3}\), ogólnie może być więcej wektorów, jeśli to nie jest prosta), da się zapisać jako liniowa kombinacja wektorów z płaszczyzny (czyli czy istnieją \(\displaystyle{ a,b \in \mathbb{R}}\) takie, że \(\displaystyle{ v_3 = av_1 + bv_2}\)), ale znacznie prostszym sposobem jest potraktowanie wektora \(\displaystyle{ v_3}\) jak punktu i sprawdzenie, czy spełnia on równanie płaszczyzny \(\displaystyle{ H}\) (oczywiście tej, co przechodzi przez \(\displaystyle{ 0}\), inaczej nie miałoby to sensu).

Podsumowując, gdy \(\displaystyle{ L = lin((x_1,x_2,x_3))}\), a \(\displaystyle{ H}\) jest dana równaniem \(\displaystyle{ ax+by+cz=0}\), to \(\displaystyle{ L}\) jest równoległa do \(\displaystyle{ H}\) wtedy, gdy \(\displaystyle{ ax_1 + bx_2 + cx_3 = 0}\).

Jeśli to jest jasne, to fajnie. Jeśli nie i chcesz zrozumieć, to napisz co jest niejasne. Wracając do twojego przykładu, wyznaczyliśmy już wektory rozpinające \(\displaystyle{ \pi}\). Co teraz wystarczy zrobić?
ODPOWIEDZ