Macierze przejścia?

Przestrzenie wektorowe, bazy, liniowa niezależność, macierze.... Formy kwadratowe, twierdzenia o klasyfikacji...
Awatar użytkownika
Niepokonana
Użytkownik
Użytkownik
Posty: 1331
Rejestracja: 4 sie 2019, o 11:12
Płeć: Kobieta
Lokalizacja: Polska
Podziękował: 309 razy
Pomógł: 12 razy

Macierze przejścia?

Post autor: Niepokonana » 6 cze 2022, o 13:47

Bardzo proszę o pomoc, bo ja w ogóle nie rozumiem tej algebry.
Dane są 2 uporządkowane bazy w \(\displaystyle{ \RR ^{2}}\).
\(\displaystyle{ B=}\)(\(\displaystyle{ \begin{bmatrix} 1\\1\end{bmatrix}}\),\(\displaystyle{ \begin{bmatrix} 1\\-1\end{bmatrix}}\)), \(\displaystyle{ D=}\)(\(\displaystyle{ \begin{bmatrix} 2\\-1\end{bmatrix}}\),\(\displaystyle{ \begin{bmatrix} -1\\1\end{bmatrix}}\))
a) Wyznacz macierz przejścia z \(\displaystyle{ B}\) do \(\displaystyle{ D}\) i z \(\displaystyle{ D}\) do \(\displaystyle{ B}\).
b)\(\displaystyle{ \begin{bmatrix} v\end{bmatrix}_{D}}\), jeżeli \(\displaystyle{ \begin{bmatrix} v\end{bmatrix}_{B}}\)\(\displaystyle{ =}\)\(\displaystyle{ \begin{bmatrix} 3\\-4\end{bmatrix}}\)

Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 9807
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 38 razy
Pomógł: 2221 razy

Re: Macierze przejścia?

Post autor: Dasio11 » 6 cze 2022, o 13:50

Jakiej używasz definicji macierzy przejścia z bazy \(\displaystyle{ X}\) do bazy \(\displaystyle{ Y}\) ?

Awatar użytkownika
Niepokonana
Użytkownik
Użytkownik
Posty: 1331
Rejestracja: 4 sie 2019, o 11:12
Płeć: Kobieta
Lokalizacja: Polska
Podziękował: 309 razy
Pomógł: 12 razy

Re: Macierze przejścia?

Post autor: Niepokonana » 6 cze 2022, o 14:21

My mieliśmy na wykładzie coś takiego, cokolwiek to znaczy.
1.png
Ostatnio zmieniony 6 cze 2022, o 17:09 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Teraz nie linkujemy, tylko dodajemy załączniki.

Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 9807
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 38 razy
Pomógł: 2221 razy

Re: Macierze przejścia?

Post autor: Dasio11 » 6 cze 2022, o 15:02

Ogólnie jeśli \(\displaystyle{ D = (d_1, \ldots, d_n)}\) jest bazą \(\displaystyle{ \RR^n}\), to dowolny wektor \(\displaystyle{ v \in \RR^n}\) można zapisać na jedyny sposób jako kombinację

$$v = \alpha_1 d_1 + \ldots \alpha_n d_n,$$

gdzie \(\displaystyle{ \alpha_1, \ldots, \alpha_n \in \RR}\). Wtedy liczby \(\displaystyle{ \alpha_1, \ldots, \alpha_n}\) nazywa się współczynnikami wektora \(\displaystyle{ v}\) w bazie \(\displaystyle{ D}\) i oznacza się

$$[v]_D = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Sens tego oznaczenia jest taki, że gdyby zmienić układ współrzędnych, tak że zamiast standardowych osi mamy osie rozpięte przez wektory \(\displaystyle{ d_1, \ldots d_n}\), to w tym nowym układzie wektor \(\displaystyle{ v}\) miałby właśnie współrzędne \(\displaystyle{ (\alpha_1, \ldots, \alpha_n)^{\top}}\).

W Twoim przypadku skoro \(\displaystyle{ B = \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, & \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{pmatrix}}\), to z definicji macierzą przejścia z \(\displaystyle{ B}\) do \(\displaystyle{ D}\) jest macierz

$$P_{D \leftarrow B} = \begin{pmatrix} \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix}_D, & \begin{bmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{bmatrix}_D \end{pmatrix}.$$

Pierwszą kolumną tej macierzy jest wektor

$$\begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix}_D = \begin{pmatrix} \alpha \\ \beta \end{pmatrix},$$

gdzie \(\displaystyle{ \alpha, \beta \in \RR}\) są jedynymi liczbami spełniającymi

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \alpha d_1 + \beta d_2 = \alpha \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Potrafisz znaleźć te liczby?

Awatar użytkownika
Niepokonana
Użytkownik
Użytkownik
Posty: 1331
Rejestracja: 4 sie 2019, o 11:12
Płeć: Kobieta
Lokalizacja: Polska
Podziękował: 309 razy
Pomógł: 12 razy

Re: Macierze przejścia?

Post autor: Niepokonana » 23 cze 2022, o 03:17

Potrafię, ale czy dla macierzy trzy na trzy nie będzie to zbyt karkołomne? No bo teraz to z dwa na dwa to sobie poradzę.

Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 9807
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 38 razy
Pomógł: 2221 razy

Re: Macierze przejścia?

Post autor: Dasio11 » 23 cze 2022, o 09:54

Przeliczenie kilku przykładów podaną metodą jest według mnie wartościowe, bo pozwala zrozumieć proces. Później zaś metodę można uprościć obserwacją:

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \alpha \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 1 \end{pmatrix} \iff \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \iff \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

W podobny sposób dowodzi się ogólnie, że jeśli \(\displaystyle{ B}\) i \(\displaystyle{ D}\) są macierzami \(\displaystyle{ n \times n}\), których kolumny tworzą bazy uporządkowane \(\displaystyle{ \mathcal{B}}\) i \(\displaystyle{ \mathcal{D}}\) przestrzeni \(\displaystyle{ \RR^n}\) odpowiednio, to

(i) dla \(\displaystyle{ v \in \RR^n}\) zachodzi \(\displaystyle{ [v]_{\mathcal{D}} = D^{-1} v}\);

(ii) \(\displaystyle{ P_{\mathcal{D} \leftarrow \mathcal{B}} = D^{-1} B}\).

ODPOWIEDZ