Strona 1 z 1

Wykazać równość

: 28 mar 2020, o 20:12
autor: Aspik
Wykazać następującą równość:
\(\displaystyle{ \displaystyle{ \sin \overline{z}=\overline{\sin z}} }\)
Skorzystałem ze wzoru na sinus różnicy kątów: \(\displaystyle{ \displaystyle{ \displaystyle{ \sin(a-b) = \sin(a)*\cos(b)-\sin(b)*\cos(a)}}}\)

Udało mi się dojść do takiego momentu:

\(\displaystyle{ \displaystyle{ \sin \overline{z}} }\) = \(\displaystyle{ \displaystyle{ \sin(x-iy)=\cosh y\cdot \sin x-i \sinh y\cdot \cos x}}\)

Proszę o jakąś wskazówkę, co należy dalej zrobić.

Re: Wykazać równość

: 28 mar 2020, o 20:20
autor: Premislav
No proste, dalej
\(\displaystyle{ \sin z=\sin(x+iy)=\sin x\cos iy+\sin iy \cos x}\),
potem korzystasz z tego, że \(\displaystyle{ \cos iy=\frac{e^{i\cdot iy}+e^{-i\cdot iy}}{2}=\cosh y, \ \sin iy=\frac{e^{i\cdot iy}-e^{-i\cdot iy}}{2i}=i\sinh y}\), więc
\(\displaystyle{ \overline{\sin z}=\ldots }\)

Dodano po 1 minucie 24 sekundach:
NB można by się zastanawiać, czy najpierw nie należy uzasadnić, że wzór na sinus sumy działa też dla argumentów zespolonych niekoniecznie rzeczywistych.

Re: Wykazać równość

: 28 mar 2020, o 20:24
autor: a4karo
A może skorzystasz z szeregu?

Re: Wykazać równość

: 29 mar 2020, o 13:27
autor: janusz47
\(\displaystyle{ \overline{\sin(z)} = \sin(x)\cosh(y) - i\cos(x)\sinh(y) = \sin(x) \cosh(-y) + i \cos(x)\sinh(-y) = \sin(x- iy) = \sin(\overline{z}).}\)