Czy dana liczba jest pierwiastkiem z jedynki?

Definicja. Postać wykładnicza i trygonometryczna. Zagadnienia związane z ciałem liczb zespolonych.
adamos271
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 23 mar 2020, o 20:33
Płeć: Mężczyzna
wiek: 20

Czy dana liczba jest pierwiastkiem z jedynki?

Post autor: adamos271 » 23 mar 2020, o 22:55

Cześć od dłuższego czasu męczy mnie takie zadanie: czy liczba \(\displaystyle{ \frac{2+i}{2-i}}\) jest pierwstkiem z jedynki.

No i jasne, mogę usunąć tę niewymierność i zrobić z tego \(\displaystyle{ \frac35 + \frac45i}\) , potem w postać trygonometryczną \(\displaystyle{ 1\cdot(\cos \alpha +i\cdot\sin \alpha )}\) no i skoro ma być to pierwiastek z jedynki to musze to podnieść do jakiejś \(\displaystyle{ n}\) -tej naturalnej potęgi. czyli można powiedzieć że jest sobie jakiś kąt \(\displaystyle{ \alpha }\) w pierwszej ćwiartce którego \(\displaystyle{ \cos}\) to \(\displaystyle{ \frac35}\) .

I teraz chcę żeby \(\displaystyle{ (\alpha \cdot n)\bmod 360 = 0 }\) i będzie tak na pewno wtedy kiedy \(\displaystyle{ \alpha}\) należy do liczb wymiernych, bo dla każdej liczby wymiernej \(\displaystyle{ \alpha = \frac{p}{q} }\), gdzie \(\displaystyle{ p }\) i \(\displaystyle{ q }\) należą do liczb naturalnych, mogę zrobić \(\displaystyle{ n = q\cdot 360}\) ; I nie będzie tak na pewno wtedy kiedy \(\displaystyle{ \alpha}\) będzie liczbą niewymierną bo liczba niewymierna pomnożona przez wymierną zawsze bedzie niewymierna, więc zadanie to tak naprawde rozbija się o pytanie czy \(\displaystyle{ \alpha }\) dla \(\displaystyle{ \cos \alpha = \frac35 }\) jest wymierne. W necie jest coś takiego jak twierdzenie Nivena i mogę sobie tutaj przepisać jego dowód i powiedzieć że na jego mocy nie i ta liczba nie jest pierwiastkiem z jedynki, ale chciałbym jakieś bardziej intuicyjne rozwiązanie, i tutaj proszę forumowiczów o pomoc.

Jak to pokazać?
Ostatnio zmieniony 23 mar 2020, o 23:44 przez Jan Kraszewski, łącznie zmieniany 2 razy.
Powód: Niepoprawnie napisany kod LaTeX-a. Symbol mnożenia to \cdot. Punkt 2.7 instrukcji LaTeX-a. Funkcje matematyczne należy zapisywać: sinus - \sin, logarytm - \log, logarytm naturalny - \ln itd. Poprawa wiadomości: na pewno.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Dasio11
Moderator
Moderator
Posty: 9017
Rejestracja: 21 kwie 2009, o 19:04
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 37 razy
Pomógł: 1943 razy

Re: Czy dana liczba jest pierwiastkiem z jedynki?

Post autor: Dasio11 » 24 mar 2020, o 10:50

Wykaż indukcyjnie, że dla \(\displaystyle{ n \ge 1}\)

\(\displaystyle{ \begin{cases} \cos n \alpha = \frac{a_n}{5^n} \\ \sin n \alpha = \frac{b_n}{5^n} \end{cases}}\)

gdzie \(\displaystyle{ a_n, b_n}\) są liczbami całkowitymi, takimi że

\(\displaystyle{ \begin{cases} a_n \equiv 3 \pmod{5} \\ b_n \equiv 4 \pmod{5} \end{cases}}\)

W szczególności dla \(\displaystyle{ n \ge 1}\) liczba \(\displaystyle{ \cos (n \alpha) + i \sin (n \alpha)}\) nie może być jedynką.

ODPOWIEDZ