Wyznacz część rzeczywistą i urojoną iloczynu

Definicja. Postać wykładnicza i trygonometryczna. Zagadnienia związane z ciałem liczb zespolonych.
adda16
Użytkownik
Użytkownik
Posty: 49
Rejestracja: 17 paź 2017, o 13:37
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 25 razy

Wyznacz część rzeczywistą i urojoną iloczynu

Post autor: adda16 »

Dana jest liczba zespolona
\(\displaystyle{ z = e^{i \frac{2\pi}{3}} = cos \frac{2\pi}{3}+isin \frac{2\pi}{3}}\)

Jak wyznaczyć część rzeczywistą i urojoną poniższego iloczynu?
\(\displaystyle{ (1+z)\cdot(1+z^2)\cdot(1+z^3)\cdot...\cdot(1+z^{100})}\)
Ostatnio zmieniony 6 lut 2018, o 17:59 przez adda16, łącznie zmieniany 1 raz.
Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15687
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 196 razy
Pomógł: 5221 razy

Re: Wyznacz część rzeczywistą i urojoną iloczynu

Post autor: Premislav »

Taki pomysł:
\(\displaystyle{ 1=\cos 0+i\sin 0}\) oraz z de Moivre'a mamy
\(\displaystyle{ z^k=\cos\left( \frac{2k\pi}{3}\right) +i\sin\left( \frac{2k\pi}{3}\right)}\),
więc
\(\displaystyle{ 1+z^k=\cos 0+\cos\left( \frac{2k\pi}{3}\right) +i\left( \sin 0+\sin\left( \frac{2k\pi}{3}\right)\right)}\)
Teraz ze wzoru na sumę sinusów (albo ze wzoru na sinus podwojonego kąta) mamy:
\(\displaystyle{ \sin 0+\sin\left( \frac{2k\pi}{3}\right)=2\sin\left( \frac{k\pi}{3}\right) \cos\left( \frac{k\pi}{3}\right)}\),
zaś ze wzoru na sumę cosinusów (albo cosinus podwojonego kąta plus jedynka trygonometryczna) otrzymamy:
\(\displaystyle{ \cos 0+\cos\left( \frac{2k\pi}{3}\right)=2\cos^2\left( \frac{k\pi}{3}\right)}\),
czyli
\(\displaystyle{ 1+z^k=2\cos\left( \frac{k\pi}{3} \right) \left( \cos\left( \frac{k\pi}{3} \right)+i\sin\left( \frac{k\pi}{3} \right)\right)}\)
Pozostaje zauważyć, że (też z de Moivre'a w sumie)
\(\displaystyle{ \prod_{k=1}^{100}\left( \cos\left( \frac{k\pi}{3} \right)+i\sin\left( \frac{k\pi}{3} \right)\right)
=\cos\left( \sum_{k=1}^{100} \frac{k\pi}{3} \right)+i\sin\left( \sum_{k=1}^{100} \frac{k\pi}{3} \right)}\)
, przeliczyć te sumy (ciąg arytmetyczny) i wykorzystać wzory redukcyjne
oraz zwinąć
\(\displaystyle{ \prod_{k=1}^{100} 2\cos\left( \frac{k\pi}{3}\right)}\)
W tym celu zauważmy, że
\(\displaystyle{ \cos\left( \frac{k\pi}{3}\right)=\cos\left( \frac{(k+6m)\pi}{3}\right)}\)
dla dowolnego \(\displaystyle{ m\in \ZZ}\) i pozostaje coś zliczyć na paluszkach (mam ich dużo), np. w związku z powyższym wystąpią w tym iloczynie po \(\displaystyle{ \left\lfloor \frac{100}{6}\right\rfloor =16}\) razy wyrażenia \(\displaystyle{ \cos\left( \frac{5\pi}{3}\right)}\) oraz \(\displaystyle{ \cos(2\pi)}\), zaś \(\displaystyle{ \left\lfloor \frac{100}{6}\right\rfloor +1}\) razy te pozostałe. Ponadto
\(\displaystyle{ \cos\left( 2\pi-a\right) =\cos(-a)=\cos(a)}\). Zatem
\(\displaystyle{ \cos\left( \frac{2\pi}{3}\right) =\cos\left( \frac{4\pi}{3}\right)}\)
i \(\displaystyle{ \cos\left( \frac{\pi}{3}\right) =\cos\left( \frac{5\pi}{3}\right)}\).
Czyli
\(\displaystyle{ \prod_{k=1}^{100}2 \cos\left( \frac{k\pi}{3}\right)=2^{100}\left( \cos\left( \frac{2\pi}{3}\right) \right)^{34} \cos\left( \frac{\pi}{3}\right)^{33}\left( \cos 2\pi\right)^{16}\left( \cos \pi\right)^{17}=-2^{100}\cdot\frac{1}{2^{67}}=-2^{33}}\)


Istniał też jakiś prostszy sposób, ale nie pamiętam go.
Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15687
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 196 razy
Pomógł: 5221 razy

Re: Wyznacz część rzeczywistą i urojoną iloczynu

Post autor: Premislav »

Pozwolę sobie dodać dla potomnych (no na pewno nie moich, hehe, a nie, przecież słowo „potomny" to nie to samo, co „potomek"…), w nawiązaniu do innego wątku użytkownika adda16, że to zadanie ma też nieco prostsze rozwiązanie (choć bardzo podobne).
Niech \(\displaystyle{ z= e^{i \frac{2\pi}{3}} = \cos \left(\frac{2\pi}{3}\right)+i\sin \left(\frac{2\pi}{3}\right)}\) i niech \(\displaystyle{ P(w)=(1+w)\cdot(1+w^2)\cdot \ldots \cdot (1+w^{100})}\).
Zauważmy, że \(\displaystyle{ z^{3k}=e^{2k\pi i}=1}\) dla dowolnego \(\displaystyle{ k \in \NN}\) (a nawet \(\displaystyle{ k\in \ZZ}\)), a ponadto
\(\displaystyle{ z^{3k+1}=z}\) oraz \(\displaystyle{ z^{3k+2}=z^2}\) dla \(\displaystyle{ k\in \NN}\)
Wśród liczb \(\displaystyle{ 1,2, \ldots 100}\) mamy \(\displaystyle{ 33}\) liczby dzielące się przez \(\displaystyle{ 3}\),
\(\displaystyle{ 34}\) liczby dające resztę \(\displaystyle{ 1}\) z dzielenia przez \(\displaystyle{ 3}\) i \(\displaystyle{ 33}\) liczby dające resztę \(\displaystyle{ 2}\) z dzielenia przez \(\displaystyle{ 3}\).
Zatem wstawiając nasze \(\displaystyle{ z}\), mamy
\(\displaystyle{ P(z)=1^{33}\cdot (1+z)^{34}\cdot (1+z^2)^{33}}\)
i teraz mamy co najmniej dwie opcje:
jak to wcześniej zrobiłem, zapisać \(\displaystyle{ z=2\cos^2\left( \frac \pi 3\right) -1+2i\cos \left( \frac \pi 3\right) \sin\left( \frac \pi 3\right)}\) itd.
bądź zapisać (de Moivre i proste mnożenie)
\(\displaystyle{ (1+z)(1+z^2)=z^3+z^2+z+1=\\=2+\cos\left( \frac{2}{3}\pi\right)+i\sin\left( \frac 2 3\pi\right)+\cos\left( \frac{4}{3}\pi\right)+i\sin\left( \frac 43\pi\right)=1}\)
oraz \(\displaystyle{ (1+z)^{34}\cdot (1+z^2)^{33}=(z^3+z^2+z+1)^{33}\cdot (1+z)}\),
co bardzo upraszcza obliczenia. Nie obiecuję, że się nie machnąłem przy rachunkach (to nie kwestia niedbalstwa, tylko niestety mimo usilnych prób skoncentrowania się czasami zdarzają mi się tego typu błędy), ale idea jest zachowana.

PS Chyba sobie zamówię T-shirt „Eutanazja jest OK", to może jakiś sprowokowany Seba na ulicy wykona na mnie tenże „zabieg". I bardzo dobrze.
ODPOWIEDZ