Postać liczby zespolonej

Definicja. Postać wykładnicza i trygonometryczna. Zagadnienia związane z ciałem liczb zespolonych.
epsylon
Użytkownik
Użytkownik
Posty: 114
Rejestracja: 25 mar 2015, o 13:56
Płeć: Kobieta
Lokalizacja: internet
Podziękował: 8 razy

Postać liczby zespolonej

Post autor: epsylon »

Dowieść, że każda liczba zespolona \(\displaystyle{ z \neq -1}\) o module równym \(\displaystyle{ 1}\) może być przedstawiona w postaci \(\displaystyle{ z= \frac{1+ti}{1-ti}}\) gdzie \(\displaystyle{ t \in \RR}\)
proszę pomóżcie
Ostatnio zmieniony 4 kwie 2015, o 10:56 przez Jan Kraszewski, łącznie zmieniany 2 razy.
Powód: Całe wyrażenia matematyczne umieszczaj w tagach [latex] [/latex]. Nieregulaminowy temat.
SlotaWoj
Użytkownik
Użytkownik
Posty: 4211
Rejestracja: 25 maja 2012, o 21:33
Płeć: Mężczyzna
Lokalizacja: Kraków PL
Podziękował: 2 razy
Pomógł: 758 razy

Postać liczby zespolonej

Post autor: SlotaWoj »

Należy wykazać, że:
  • \(\displaystyle{ \left|\ \frac{1+ti}{1-ti}\ \right| = 1}\)

    \(\displaystyle{ \cos\left(\mbox{Arg}\ \frac{1+ti}{1-ti}\right)\in\left\langle-1;1\right\rangle}\)

    \(\displaystyle{ \sin\left(\mbox{Arg}\ \frac{1+ti}{1-ti}\right)\in\left\langle-1;1\right\rangle}\)
Oznacza to, że przy pomocy wyrażenia: \(\displaystyle{ z=\frac{1+ti}{1-ti}}\) można przedstawić wszystkie liczby \(\displaystyle{ z\neq-1\ \wedge\ \left|z\right|=1}\) .

Warunek \(\displaystyle{ z\neq-1}\) jest po to, aby było określone wyrażenie odwrotne do ww., tzn. \(\displaystyle{ t=\frac{z-1}{(z+1)i}}\) .
epsylon
Użytkownik
Użytkownik
Posty: 114
Rejestracja: 25 mar 2015, o 13:56
Płeć: Kobieta
Lokalizacja: internet
Podziękował: 8 razy

Postać liczby zespolonej

Post autor: epsylon »

Dziękuję, ale zaczęłam od innej strony, próbowałam lewą stronę, wiedząc, że moduł jest równy 1, zapisać w postaci trygonometrycznej. Ciężko jest mi to ogarnąć
Awatar użytkownika
yorgin
Użytkownik
Użytkownik
Posty: 12762
Rejestracja: 14 paź 2006, o 12:09
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 17 razy
Pomógł: 3440 razy

Postać liczby zespolonej

Post autor: yorgin »

Skoro \(\displaystyle{ z=e^{ib}}\), to

\(\displaystyle{ z=\cos b+i\sin b=\ldots \\
\\
t=\tan \frac{b}{2}\\
\\
\cos b=\frac{1-t^2}{1+t^2}\\
\\
\sin b=\frac{2t}{1+t^2}\\
\\
\ldots = \frac{1-t^2}{1+t^2}+i\frac{2t}{1+t^2}=\frac{1+it}{1-it}}\)
.

Podstawienie nie działa jedynie wtedy, gdy \(\displaystyle{ t\equiv \pi \mod 2\pi}\), czyli w szczególności dla \(\displaystyle{ z=-1}\).
epsylon
Użytkownik
Użytkownik
Posty: 114
Rejestracja: 25 mar 2015, o 13:56
Płeć: Kobieta
Lokalizacja: internet
Podziękował: 8 razy

Postać liczby zespolonej

Post autor: epsylon »

A prościej nie idzie?
Moja lewa strona \(\displaystyle{ = \cos \pi + i \sin \pi}\)
Prawa \(\displaystyle{ \frac{1+ti}{1-ti}}\). Mnożę obie strony przez \(\displaystyle{ 1-ti}\). Czy tak Jest niepoprawnie?
Ostatnio zmieniony 4 kwie 2015, o 16:33 przez yorgin, łącznie zmieniany 1 raz.
Powód: Nieczytelny zapis - brak LaTeX-a. Proszę zapoznaj się z instrukcją: http://matematyka.pl/latex.htm .
Awatar użytkownika
yorgin
Użytkownik
Użytkownik
Posty: 12762
Rejestracja: 14 paź 2006, o 12:09
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 17 razy
Pomógł: 3440 razy

Postać liczby zespolonej

Post autor: yorgin »

epsylon pisze:A prościej nie idzie?
Moje rozumowanie jest całkowicie elementarne.
epsylon pisze: Moja lewa strona \(\displaystyle{ = \cos \pi + i \sin \pi}\)
Prawa \(\displaystyle{ \frac{1+ti}{1-ti}}\). Mnożę obie strony przez \(\displaystyle{ 1-ti}\). Czy tak Jest niepoprawnie?
Nie wiem. Jest to zaczątek jakiegoś rozumowania, które nie wiadomo, do czego ma prowadzić.
epsylon
Użytkownik
Użytkownik
Posty: 114
Rejestracja: 25 mar 2015, o 13:56
Płeć: Kobieta
Lokalizacja: internet
Podziękował: 8 razy

Postać liczby zespolonej

Post autor: epsylon »

Nie mieliśmy tej postaci wykładniczej, nie bardzo się orientuję, skąd takie wartości sinusa i cosinusa, skąd ten tangens.
Awatar użytkownika
Seth Briars
Użytkownik
Użytkownik
Posty: 151
Rejestracja: 20 lis 2013, o 00:15
Płeć: Mężczyzna
Lokalizacja: Coot's Chapel
Pomógł: 55 razy

Postać liczby zespolonej

Post autor: Seth Briars »

\(\displaystyle{ z=\begin{cases}\frac{1+0 \cdot i}{1-0 \cdot i},Im(z)=0 \\ \frac{1+i \cdot \frac{1-Re(z)}{Im(z)}}{1-i \cdot \frac{1-Re(z)}{Im(z)}}, Im(z) \neq 0 \end{cases}}\) gdzie \(\displaystyle{ Re, Im}\) to odpowiednio części rzeczywista i urojona.
epsylon
Użytkownik
Użytkownik
Posty: 114
Rejestracja: 25 mar 2015, o 13:56
Płeć: Kobieta
Lokalizacja: internet
Podziękował: 8 razy

Postać liczby zespolonej

Post autor: epsylon »

Do seth, proszę objaśnij, jak doszedłeś do tej postaci.
Awatar użytkownika
yorgin
Użytkownik
Użytkownik
Posty: 12762
Rejestracja: 14 paź 2006, o 12:09
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 17 razy
Pomógł: 3440 razy

Postać liczby zespolonej

Post autor: yorgin »

epsylon pisze:Nie mieliśmy tej postaci wykładniczej
To usuń postać wykładniczą z mojego rozumowania. Nic się ponadto nie zmienia.
epsylon pisze: nie bardzo się orientuję, skąd takie wartości sinusa i cosinusa, skąd ten tangens.
Ten tangens to klasyczne podstawienie trygonometryczne w całkach, które można z powodzeniem zaadoptować do zadania.

Pomijając kontekst całek, wszystko jest wyjaśnione
Awatar użytkownika
Seth Briars
Użytkownik
Użytkownik
Posty: 151
Rejestracja: 20 lis 2013, o 00:15
Płeć: Mężczyzna
Lokalizacja: Coot's Chapel
Pomógł: 55 razy

Postać liczby zespolonej

Post autor: Seth Briars »

epsylon pisze:Do seth, proszę objaśnij, jak doszedłeś do tej postaci.
Skoro \(\displaystyle{ |z|=1,z \neq -1}\), to istnieją rzeczywiste \(\displaystyle{ a,b}\), że \(\displaystyle{ a^2+b^2=1,z=a+bi}\). Możesz zatem przyrównać \(\displaystyle{ \frac{1+ti}{1-ti}=a+bi}\). Sprowadź to równanie do postaci \(\displaystyle{ x+iy=w+ir}\) gdzie \(\displaystyle{ x,y,w,r \in \mathbb{R}}\). Otrzymasz stąd \(\displaystyle{ \begin{cases}x=w \\ y=r \end{cases}}\). Wywnioskuj stąd \(\displaystyle{ t}\) korzystając z \(\displaystyle{ a^2+b^2=1}\).
epsylon
Użytkownik
Użytkownik
Posty: 114
Rejestracja: 25 mar 2015, o 13:56
Płeć: Kobieta
Lokalizacja: internet
Podziękował: 8 razy

Postać liczby zespolonej

Post autor: epsylon »

Proszę, rozpisz mi to krok po kroku. Powoli zaczynam rozumieć... Będę bardzo wdzięczna.
Awatar użytkownika
Seth Briars
Użytkownik
Użytkownik
Posty: 151
Rejestracja: 20 lis 2013, o 00:15
Płeć: Mężczyzna
Lokalizacja: Coot's Chapel
Pomógł: 55 razy

Postać liczby zespolonej

Post autor: Seth Briars »

Skoro \(\displaystyle{ |z|=1,z \neq -1}\), to istnieją rzeczywiste \(\displaystyle{ a,b}\), że \(\displaystyle{ a^2+b^2=1,z=a+bi}\). Możesz zatem przyrównać \(\displaystyle{ \frac{1+ti}{1-ti}=a+bi}\)

Rozwiązujesz to równanie:

\(\displaystyle{ \frac{1+ti}{1-ti}=a+bi \\ (a+bi)(1-ti)=1+ti \\ (a+bt)+(b-at)i=1+ti}\) skąd

\(\displaystyle{ \begin{cases}a+bt=1 \\ b-at=t\end{cases} \\ *\begin{cases}bt=1-a \\ t(1+a)=b \end{cases}}\)

1. przypadek \(\displaystyle{ b=0}\), wtedy w \(\displaystyle{ *}\) musi być \(\displaystyle{ t=0}\)
2. przypadek \(\displaystyle{ b \neq 0}\), wtedy w \(\displaystyle{ *}\) musi być \(\displaystyle{ t,1+a \neq 0}\) skąd wyznaczając z pierwszego równania \(\displaystyle{ t=\frac{1-a}{b}}\) i podstawiając do drugiego otrzymasz \(\displaystyle{ \frac{1-a}{b} \cdot (1+a)=b}\), co daje \(\displaystyle{ a^2+b^2=1}\), a co wynika z założenia o \(\displaystyle{ z}\), więc \(\displaystyle{ \begin{cases}bt=1-a \\ t(1+a)=b \end{cases} \Leftrightarrow t=\frac{1-a}{b}}\).

Stąd już wprost wynika, że w przypadku \(\displaystyle{ z=1}\) wystarczy przyjąć \(\displaystyle{ t=0}\), w przypadku zaś \(\displaystyle{ z \neq 1}\) wystarczy przyjąć \(\displaystyle{ t=\frac{1-a}{b}}\), skąd wynikają podane wyżej wzory.
epsylon
Użytkownik
Użytkownik
Posty: 114
Rejestracja: 25 mar 2015, o 13:56
Płeć: Kobieta
Lokalizacja: internet
Podziękował: 8 razy

Postać liczby zespolonej

Post autor: epsylon »

Seth, mam jeszcze jedno zadanie. Dowieść, że \(\displaystyle{ z}\) do potęgi \(\displaystyle{ n}\) równa się sprzężenie \(\displaystyle{ z}\).

-- 4 kwi 2015, o 17:14 --

W dalszym ciągu nie wiem skąd ta liczba \(\displaystyle{ w}\), co to jest za liczba?
Ostatnio zmieniony 4 kwie 2015, o 19:15 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Używaj LaTeXa także do pojedynczych symboli.
Awatar użytkownika
yorgin
Użytkownik
Użytkownik
Posty: 12762
Rejestracja: 14 paź 2006, o 12:09
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 17 razy
Pomógł: 3440 razy

Postać liczby zespolonej

Post autor: yorgin »

epsylon pisze:Dowieść, że \(\displaystyle{ z}\) do potęgi \(\displaystyle{ n}\) równa się sprzężenie \(\displaystyle{ z}\).
Jakie są założenia? W ogólności to nie jest prawda.

Pytanie dodatkowe - czy próbowałaś zrozumieć moje rozwiązanie, czy odrzucasz je, bo jest "za trudne", zawiera "trudne przekształcenia" czy może inny powód?
ODPOWIEDZ