Szkicowanie na płaszczyźnie Gaussa.

Definicja. Postać wykładnicza i trygonometryczna. Zagadnienia związane z ciałem liczb zespolonych.
normandy
Użytkownik
Użytkownik
Posty: 31
Rejestracja: 1 sty 2008, o 19:38
Płeć: Mężczyzna
Lokalizacja: Żywiec
Podziękował: 2 razy

Szkicowanie na płaszczyźnie Gaussa.

Post autor: normandy »

Witam!

Mam do naszkicowania zbiór liczb zespolonych \(\displaystyle{ z \in C}\) takich że:
\(\displaystyle{ Re \frac{z}{z+i}=0 \wedge \frac{z}{z+i} \neq 0}\)


Widziałem, że było już to zadanie na forum, gdzie autor pytał czy dobrze zrobił, lecz niestety nie przemawia do mnie jego tok rozumowania.

Na początek przyjąłem że \(\displaystyle{ z=x+iy}\)
więc zapisałem w tej postaci daną w zadaniu liczbę zespoloną oznaczając ją przez \(\displaystyle{ w}\)

\(\displaystyle{ w= \frac{x+iy}{x+iy+i}}\)
Aby pozbyć się części urojonej z mianownika wymnożyłem przez sprzężenie i otrzymałem:
\(\displaystyle{ \frac{x^2+y^2+y-xi}{x^2+y+1}}\)
Wyodrębniam część rzeczywistą otrzymując
\(\displaystyle{ \frac{x^2+y^2+y}{x^2+y+1}}\)
Będzie to równe \(\displaystyle{ 0 \Leftrightarrow x^2+y^2+y=0}\)

Stąd widać, iż jest to równanie okręgu o środku \(\displaystyle{ S=(0,-0,5)}\)
i promieniu \(\displaystyle{ r=0,5}\)

Czyli wszystkie liczby zespolone leżące na tym okręgu spełniają pierwsze obostrzenie.

Teraz sprawdzamy kiedy zachodzi:
\(\displaystyle{ \frac{z}{z+i} \neq 0}\)
Będzie tak gdy:
\(\displaystyle{ {x^2+y^2+y-xi \neq 0}\)

Liczba zespolona ma wartość zero gdy zerowy jest jej moduł, lecz licząc moduł otrzymuję:
\(\displaystyle{ \sqrt{x^4+(y^2+y)^4+2x^2(y^2+y)^2 + x^2}}\)

Czy jest jakiś sposób aby policzyć to szybciej, sprawniej? We wcześniej wspomnianym rozwiązaniu obyło się bez takich komplikacji, jak to zrobić?

https://www.matematyka.pl/260395.htm tutaj to rozwiązanie

dziękuje za pomoc
miodzio1988

Szkicowanie na płaszczyźnie Gaussa.

Post autor: miodzio1988 »

Łatwiej:

\(\displaystyle{ \frac{z}{z+i} = 0}\)

Kiedy ułamek jest równy zero? Kiedy licznik jest równy zero. Więc \(\displaystyle{ z=0}\)

Zatem zaprzeczenie jest jakie?
luka52
Użytkownik
Użytkownik
Posty: 8601
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1816 razy

Szkicowanie na płaszczyźnie Gaussa.

Post autor: luka52 »

Źle wymnażasz na początku, powinno być: \(\displaystyle{ \frac{x^2+y^2+y-xi}{x^2+y^2 + 2y+1}}\)
normandy
Użytkownik
Użytkownik
Posty: 31
Rejestracja: 1 sty 2008, o 19:38
Płeć: Mężczyzna
Lokalizacja: Żywiec
Podziękował: 2 razy

Szkicowanie na płaszczyźnie Gaussa.

Post autor: normandy »

Aby \(\displaystyle{ z=0}\) to moduł musi być zero więc:

\(\displaystyle{ \sqrt{x^2+y^2}=0}\)

\(\displaystyle{ x^2+y^2=0}\)

Dostałem okrąg o środku \(\displaystyle{ S=(0,0)}\) i zerowym promieniu czyli z rozwiązania graficznego wyjmuję ten punkt i odpowiedź stanowi otrzymany wcześniej okrąg tak?
Ostatnio zmieniony 4 sie 2012, o 16:22 przez normandy, łącznie zmieniany 1 raz.
miodzio1988

Szkicowanie na płaszczyźnie Gaussa.

Post autor: miodzio1988 »

zaprzecznia tego warunku szukamy, więc bierzemy wszystko poza tym co nam wyszło ( no i jeszcze dziedzina)
normandy
Użytkownik
Użytkownik
Posty: 31
Rejestracja: 1 sty 2008, o 19:38
Płeć: Mężczyzna
Lokalizacja: Żywiec
Podziękował: 2 razy

Szkicowanie na płaszczyźnie Gaussa.

Post autor: normandy »

Zapomniałem o dziedzinie więc:

\(\displaystyle{ x^2+y^2+2y+1}\) to okrąg o środku \(\displaystyle{ S=(0,-1)}\) i o promieniu \(\displaystyle{ \sqrt{5}}\).
Do kręgu tego nie należy żadna liczba zespolona równa zero więc dziedzina nie uszczupla rozwiązania.

Więc ostatecznie rozwiązaniem jest okrąg \(\displaystyle{ S=(0,-0,5) r=0,5}\)

tak?
ODPOWIEDZ