Wielomian w funkcjach trygonometrycznych

Własności wielomianów; pierwiastki, współczynniki. Dzielenie wielomianów. Wzory Viete'a. RÓWNANIA I NIERÓWNOŚCI wielomianowe (wyższych stopni). Rozkład na czynniki.
Nadine
Użytkownik
Użytkownik
Posty: 118
Rejestracja: 24 paź 2019, o 21:28
Płeć: Kobieta
wiek: 19
Podziękował: 9 razy
Pomógł: 1 raz

Wielomian w funkcjach trygonometrycznych

Post autor: Nadine » 27 lis 2019, o 18:20

Zapisz \(\displaystyle{ \cos(7x)}\) jako \(\displaystyle{ w(\cos(x))}\) gdzie w jest wielomianem stopnia siódmego.
Póki co szukam wskazówki od czego zacząć
Ostatnio zmieniony 27 lis 2019, o 20:32 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Używaj LaTeXa do wszystkich wyrażeń matematycznych.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 14517
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 90 razy
Pomógł: 4782 razy

Re: Wielomian w funkcjach trygonometrycznych

Post autor: Premislav » 27 lis 2019, o 18:43

Wskazówka:
\(\displaystyle{ \cos(7x)=\mathrm{Re}\left( (\cos x+i\sin x)^{7}\right)}\), co wynika ze wzoru de Moivre'a (albo pośrednio ze wzoru Eulera). Rozwiń to ze wzoru dwumianowego i weź część rzeczywistą.

Nadine
Użytkownik
Użytkownik
Posty: 118
Rejestracja: 24 paź 2019, o 21:28
Płeć: Kobieta
wiek: 19
Podziękował: 9 razy
Pomógł: 1 raz

Re: Wielomian w funkcjach trygonometrycznych

Post autor: Nadine » 27 lis 2019, o 20:16

\(\displaystyle{ \cos^7(x) - 21 \sin^2(x) \cos^5(x) + 35 \sin^4(x) \cos^3(x) - 7 \sin^6(x) \cos(x)}\)

Zostało coś takiego
Ostatnio zmieniony 27 lis 2019, o 20:33 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Punkt 2.7 instrukcji LaTeX-a. Funkcje matematyczne należy zapisywać: sinus - \sin, logarytm - \log, logarytm naturalny - \ln itd.

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 14517
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 90 razy
Pomógł: 4782 razy

Re: Wielomian w funkcjach trygonometrycznych

Post autor: Premislav » 27 lis 2019, o 20:26

Nie sprawdzałem obliczeń, ale podpowiem jeszcze, że parzystych potęg sinusa możesz się pozbyć dzięki jedynce trygonometrycznej.

Nadine
Użytkownik
Użytkownik
Posty: 118
Rejestracja: 24 paź 2019, o 21:28
Płeć: Kobieta
wiek: 19
Podziękował: 9 razy
Pomógł: 1 raz

Re: Wielomian w funkcjach trygonometrycznych

Post autor: Nadine » 28 lis 2019, o 21:39

Rozłożyłam to na
\(\displaystyle{
\cos^7 - 21(1-\cos^2)\cos^5+35(1-\cos^2)^2 \cos^3
-7(1-\cos^2)^3\cos
}\)

Rozumiem, że trzeba wymnożyć

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 14517
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 90 razy
Pomógł: 4782 razy

Re: Wielomian w funkcjach trygonometrycznych

Post autor: Premislav » 28 lis 2019, o 22:04

Nadine pisze: Rozumiem, że trzeba wymnożyć
Zgadza się.

janusz47
Użytkownik
Użytkownik
Posty: 5531
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 9 razy
Pomógł: 1211 razy

Re: Wielomian w funkcjach trygonometrycznych

Post autor: janusz47 » 28 lis 2019, o 23:12

\(\displaystyle{ \cos(7x) + i \sin (7x) = (\cos x + i\cdot \sin x)^7 = (a + i b)^7 }\)

Z trójkąta Pascala lub rozwinięcia dwumianu Newtona

\(\displaystyle{ (a + ib) ^7 = a^{7} + 7a^6\cdot ib + 21a^5\cdot (ib)^2 + 35a^4\cdot (ib)^3 + 35a^3\cdot (ib)^4 + 21a^2 \cdot (ib)^5 + 7a\cdot (ib)^{6} + (ib)^7}\)

\(\displaystyle{ (a +ib)^7 = a^7 +7i a^6 b - 21a^5 b^2 -35i a^4 b^3 +35a^3b^4 + 21i a^2 b^5 -7a b^6 - ib^7 = (a^7 -21a^5 b^2+35a^3\cdot b^4 - 7a b^ 6) +\\ + i ( 7a^6 -35 a^4 b^3 +21a^2 b^5 - b^7) }\)

\(\displaystyle{ \mathcal{R}e [ \cos (7x) + i \sin (7x)] = \cos(7x) = \cos^7 x - 21\cos^5 x \sin^2 x + 35\cos^3 x\sin^4 x - 7\cos x\sin^6 x.}\)
Ostatnio zmieniony 28 lis 2019, o 23:15 przez Jan Kraszewski, łącznie zmieniany 1 raz.

a4karo
Użytkownik
Użytkownik
Posty: 17540
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 4 razy
Pomógł: 2957 razy

Re: Wielomian w funkcjach trygonometrycznych

Post autor: a4karo » 29 lis 2019, o 06:44

Nadine już to napisała wcześniej. Wartością dodaną byłoby, gdybyś napisał rozwiązanie do końca, a tak tylko sobie posty nabijasz.

janusz47
Użytkownik
Użytkownik
Posty: 5531
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 9 razy
Pomógł: 1211 razy

Re: Wielomian w funkcjach trygonometrycznych

Post autor: janusz47 » 29 lis 2019, o 10:52

Nigdy nie myślałem o "nabijaniu sobie postów". Kiedyś nabijałem sobie naboje do wody sodowej. Pani Nadine podała gotowy wzór rozwinięcia dwumianowego \(\displaystyle{ \cos(7x) }\) skąd? ( z Wolframa? ). Celowym było jego potwierdzenie.

\(\displaystyle{ \cos (7x) = \cos^7 x - 21\cos^5 x \sin^2 x + 35\cos^3 x \sin^4 x - 7\cos x \sin^6 x }\)

\(\displaystyle{ \cos(7x) = \cos^7x - 21 \cos^5 x [1 -\cos^2x ] +35\cos ^3x [1 -\cos^2x]^2 -7\cos x[ 1 -\cos^2x]^3 = \cos^7x -21\cos^5x +21\cos^7x +\\ + 35\cos^3x [1 -2\cos^2x +\cos^4x]+ 7\cos x [ 1 - 3\cos^2x +3\cos^4x -\cos^6x] }\)

\(\displaystyle{ \cos(7x) = \cos^7 x -21\cos^5x +21\cos^7x + 35\cos^3 x - 70 \cos^5x +35\cos^7x +7\cos x -21\cos^3 x +21\cos^5 x -7\cos^7 x }\)

\(\displaystyle{ \cos(7x) = 50\cos^7 x - 70\cos^5 x +14\cos ^3 x + 7\cos x .}\)

Nadine
Użytkownik
Użytkownik
Posty: 118
Rejestracja: 24 paź 2019, o 21:28
Płeć: Kobieta
wiek: 19
Podziękował: 9 razy
Pomógł: 1 raz

Re: Wielomian w funkcjach trygonometrycznych

Post autor: Nadine » 30 lis 2019, o 14:36

Liczyłam to w zeszycie, dlatego trochę wolno odpowiadałam tutaj. Wolę zapisać tutaj końcówkę działań ponieważ pisanie wszystkich funkcji było by żmudne. Dziękuję jednak wszystkim za pomoc

a4karo
Użytkownik
Użytkownik
Posty: 17540
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 4 razy
Pomógł: 2957 razy

Re: Wielomian w funkcjach trygonometrycznych

Post autor: a4karo » 30 lis 2019, o 14:40

janusz47 pisze:
29 lis 2019, o 10:52
Nigdy nie myślałem o "nabijaniu sobie postów". Kiedyś nabijałem sobie naboje do wody sodowej. Pani Nadine podała gotowy wzór rozwinięcia dwumianowego \(\displaystyle{ \cos(7x) }\) skąd? ( z Wolframa? ). Celowym było jego potwierdzenie.
Celowym byłoby jej przeproszenie...

ODPOWIEDZ