Pierwiastki

Własności wielomianów; pierwiastki, współczynniki. Dzielenie wielomianów. Wzory Viete'a. RÓWNANIA I NIERÓWNOŚCI wielomianowe (wyższych stopni). Rozkład na czynniki.
Nadine
Użytkownik
Użytkownik
Posty: 118
Rejestracja: 24 paź 2019, o 21:28
Płeć: Kobieta
wiek: 19
Podziękował: 9 razy
Pomógł: 1 raz

Re: Pierwiastki

Post autor: Nadine » 5 lis 2019, o 20:38

Dilectus pisze:
5 lis 2019, o 10:10
\(\displaystyle{ x^4 − \frac{7x^3}{2} + x^2 +\frac{x}{2} + 1=0}\)

Łatwo zgadnąć, że jednym z pierwiastków tego równania jest liczba 1. Możemy więc napisać, że

\(\displaystyle{ x^4 − \frac{7x^3}{2} + x^2 +\frac{x}{2} + 1=(x-1)\left( x^3- \frac{5}{2}x^2- \frac{3}{2} x-1\right) =0}\)

Teraz wystarczy znaleźć pierwiastki tego wielomianu trzeciego stopnia, co na razie mnie się nie udało, ale pomyślę nad tym.

:)
Sama to napisałam wcześniej

Dodano po 29 minutach 46 sekundach:
Użyłam wzoru Cardano ale mam problem, w moim przypadku
\(\displaystyle{ x= y- \frac{5}{6} }\)
po czym gdy to podstawiam wychodzi mi
\(\displaystyle{ 2x^3 - 10x^2 + \frac{19}{2}x-\frac{223}{54}}\)
Z tego co rozumiałam nie powinno mi nic wychodzić przy \(\displaystyle{ x^2 }\)
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Psiaczek
Użytkownik
Użytkownik
Posty: 1450
Rejestracja: 22 lis 2010, o 09:53
Płeć: Mężczyzna
Lokalizacja: Polska, Warmia, Olsztyn :)
Podziękował: 1 raz
Pomógł: 460 razy

Re: Pierwiastki

Post autor: Psiaczek » 5 lis 2019, o 21:53

Kobieto, musisz podstawić

\(\displaystyle{ x= y+ \frac{5}{6} }\)

sprawdź sama że zachodzi równość :

\(\displaystyle{ \left( y+ \frac{5}{6}\right)^3- \frac{5}{2}\left( y+ \frac{5}{6}\right)^2- \frac{3}{2}\left( y+ \frac{5}{6}\right)-1=y^3- \frac{43}{12} y- \frac{92}{27} .}\)
Ostatnio zmieniony 5 lis 2019, o 22:16 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Skaluj nawiasy.

Nadine
Użytkownik
Użytkownik
Posty: 118
Rejestracja: 24 paź 2019, o 21:28
Płeć: Kobieta
wiek: 19
Podziękował: 9 razy
Pomógł: 1 raz

Re: Pierwiastki

Post autor: Nadine » 5 lis 2019, o 22:00

Tak zrobiłam tylko dałam zły znak już ok

daras170
Użytkownik
Użytkownik
Posty: 685
Rejestracja: 24 mar 2014, o 19:57
Płeć: Mężczyzna
Lokalizacja: Toronto
Pomógł: 73 razy

Re: Pierwiastki

Post autor: daras170 » 28 lis 2019, o 08:46

Nadine pisze:
4 lis 2019, o 11:44
Znajdź wszystkie pierwiastki wymierne wielomianu \(\displaystyle{ x^4 − \frac{7x^3}{2} + x^2 +\frac{x}{2} + 1}\). Znajdź wszystkie pierwiastki rzeczywiste tego wielomianu.
Jan Kraszewski pisze:
4 lis 2019, o 22:24
W ogólności: wzory Cardano (brrr...).

JK
Pierwiastki wymierne: \(\displaystyle{ x_1 = 1}\), pierwiastki rzeczywiste: \(\displaystyle{ x_1 = 1,\ x_2\approx 2,2568}\)
są jeszcze 2 zespolone: \(\displaystyle{ z_{1,2} \approx -1,1284 \pm 0,4864\cdot i}\).
DG :)

Niepokonana
Użytkownik
Użytkownik
Posty: 713
Rejestracja: 4 sie 2019, o 11:12
Płeć: Kobieta
Lokalizacja: Polska
Podziękował: 141 razy
Pomógł: 3 razy

Re: Pierwiastki

Post autor: Niepokonana » 28 lis 2019, o 15:48

Mnie uczono, że jeżeli wielomian ma pierwiastki całkowite, to są one dzielnikami wyrazu wolnego. A jak wymierne to są one dzielnik wyrazu wolnego przez dzielnik wyrazu przy najwyższej potędze, ale ja się nie znam.

Jan Kraszewski
Administrator
Administrator
Posty: 25981
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4350 razy

Re: Pierwiastki

Post autor: Jan Kraszewski » 28 lis 2019, o 15:52

Niepokonana pisze:
28 lis 2019, o 15:48
Mnie uczono, że jeżeli wielomian ma pierwiastki całkowite, to są one dzielnikami wyrazu wolnego. A jak wymierne to są one dzielnik wyrazu wolnego przez dzielnik wyrazu przy najwyższej potędze,
O ile jest to wielomian o współczynnikach całkowitych.

Ale co to ma wspólnego z tym tematem?

JK

Niepokonana
Użytkownik
Użytkownik
Posty: 713
Rejestracja: 4 sie 2019, o 11:12
Płeć: Kobieta
Lokalizacja: Polska
Podziękował: 141 razy
Pomógł: 3 razy

Re: Pierwiastki

Post autor: Niepokonana » 28 lis 2019, o 15:57

Mówię, jak zrobić to zadanie. W tym przypadku wystarczy przemnożyć wielomian przez 2 i będą całkowite.

Jan Kraszewski
Administrator
Administrator
Posty: 25981
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4350 razy

Re: Pierwiastki

Post autor: Jan Kraszewski » 28 lis 2019, o 16:10

A przeczytałaś ten temat? To nie pomoże, bo ten wielomian ma tylko jeden pierwiastek całkowity (wymierny). Do tego jeden niewymierny i dwa zespolone.

JK

Nadine
Użytkownik
Użytkownik
Posty: 118
Rejestracja: 24 paź 2019, o 21:28
Płeć: Kobieta
wiek: 19
Podziękował: 9 razy
Pomógł: 1 raz

Re: Pierwiastki

Post autor: Nadine » 28 lis 2019, o 19:33

Wracam do tego tematu aby się sprawdzić do końca.
Z tego co rozumiem dalej lecę tak
\(\displaystyle{
y^3-\frac{43y}{12}-\frac{92}{27}
}\)

\(\displaystyle{
y=s+\frac{43}{36s}
}\)

\(\displaystyle{
s^3 + \frac{79507}{46656 s^3} - \frac{92}{27} =0
}\)

\(\displaystyle{
z=s^3
}\)

\(\displaystyle{
z^2-\frac{92z}{27}+\frac{79507}{46656}=0
}\)

I dobra z tego policzę pierwiastki z ale co później, wracać jakoś czy te pierwiastki są moim rozwiązaniem

a4karo
Użytkownik
Użytkownik
Posty: 17540
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 4 razy
Pomógł: 2957 razy

Re: Pierwiastki

Post autor: a4karo » 28 lis 2019, o 19:37

A któż tak podnosi sumy do trzeciej potęgi?

daras170
Użytkownik
Użytkownik
Posty: 685
Rejestracja: 24 mar 2014, o 19:57
Płeć: Mężczyzna
Lokalizacja: Toronto
Pomógł: 73 razy

Re: Pierwiastki

Post autor: daras170 » 28 lis 2019, o 19:47

Masz szczęście, że jeszcze nie wyrzuciłem tych kartek i mogę coś przepisać ;)
W wiekowym (tak jak i ja) poradniku encyklopedycznym matematyka I.Bronsztejna znalazłem trochę inną, wygodniejszą postać kanoniczną

\(\displaystyle{ y^3+3py +2q = 0}\)

ale dalej liczy się podobnie czyli

\(\displaystyle{ 3p = -\frac{43}{12},\ 2q =-\frac{92}{27}}\).

Teraz wyznacznik \(\displaystyle{ D = q^2 + p^3 > 0 \Rightarrow}\) 1 pierwiastek rzeczywisty\(\displaystyle{ (y_1)}\) i 2 zespolone \(\displaystyle{ (y_2, y_3)}\)

\(\displaystyle{ y_1 = u + v,\\ y_2 = \epsilon_1 u + \epsilon_2 v,\\ y_3 = \epsilon_2 u + \epsilon_1 v}\),

gdzie \(\displaystyle{ u = \sqrt[3]{-q+\sqrt{D}},\ \ v = \sqrt[3]{-q-\sqrt{D}}}\),

a \(\displaystyle{ \epsilon_1, \ \epsilon_2}\) są pierwiastkami r-nia: \(\displaystyle{ x^2 + x +1 = 0 \Rightarrow \ \epsilon_1 = -\frac{1}{2} + i \frac{\sqrt{3}}{2},\ \ \epsilon_2 = -\frac{1}{2} -i \frac{\sqrt{3}}{2}}\).
Ostatnio zmieniony 28 lis 2019, o 21:22 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

Nadine
Użytkownik
Użytkownik
Posty: 118
Rejestracja: 24 paź 2019, o 21:28
Płeć: Kobieta
wiek: 19
Podziękował: 9 razy
Pomógł: 1 raz

Re: Pierwiastki

Post autor: Nadine » 28 lis 2019, o 21:21

Czy zawsze są to pierwiastki równania
\(\displaystyle{
x^2+x+1=0
}\)

czy to tylko w moim przypadku?

daras170
Użytkownik
Użytkownik
Posty: 685
Rejestracja: 24 mar 2014, o 19:57
Płeć: Mężczyzna
Lokalizacja: Toronto
Pomógł: 73 razy

Re: Pierwiastki

Post autor: daras170 » 30 lis 2019, o 21:46

Nie przeliczałem nieskończonej ilości równań 4 stopnia ale wydaje mi się, że tak.

ODPOWIEDZ