Problem z równaniem wielomianowym

Własności wielomianów; pierwiastki, współczynniki. Dzielenie wielomianów. Wzory Viete'a. RÓWNANIA I NIERÓWNOŚCI wielomianowe (wyższych stopni). Rozkład na czynniki.
MSZ98
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 30 gru 2018, o 19:59
Płeć: Mężczyzna
Lokalizacja: Kielce
Podziękował: 5 razy

Problem z równaniem wielomianowym

Post autor: MSZ98 »

Dzień dobry,

mam problem z następującym równaniem:
\(\displaystyle{ x^{3} - 3\sqrt[3]{2}x + 2 = 0}\)

Chodzi mi o jakiś algebraiczny sposób rozwiązania tego.
Próbowałem różnymi metodami i jedynie jakieś tam internetowe solvery dawały sobie radę chyba numerycznie.

Z góry dziękuję za pomoc i pozdrawiam serdecznie.
Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15685
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 195 razy
Pomógł: 5219 razy

Re: Problem z równaniem wielomianowym

Post autor: Premislav »

Poczytaj może o wzorach Cardana.

Kod: Zaznacz cały

https://brilliant.org/wiki/cardano-method/
Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 8570
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna
Podziękował: 306 razy
Pomógł: 3347 razy

Re: Problem z równaniem wielomianowym

Post autor: kerajs »

Akurat tu jeden z pierwiastków można odgadnąć. To \(\displaystyle{ x=\sqrt[3]{4}}\) , gdyż :
\(\displaystyle{ (\sqrt[3]{4})^3-3\sqrt[3]{2}\sqrt[3]{4}+2 =4-3 \cdot 2+2=0}\)
Awatar użytkownika
Mariusz M
Użytkownik
Użytkownik
Posty: 6903
Rejestracja: 25 wrz 2007, o 01:03
Płeć: Mężczyzna
Lokalizacja: 53°02'N 18°35'E
Podziękował: 2 razy
Pomógł: 1246 razy

Re: Problem z równaniem wielomianowym

Post autor: Mariusz M »

\(\displaystyle{ x^{3} - 3\sqrt[3]{2}x + 2 = 0\\
x=u+v
x^3=u^3+3u^2v+3uv^2+v^3\\
x^3=3uv\left( u+v\right) +u^3+v^3\\
x^3=3uvx+u^3+v^3\\}\)


\(\displaystyle{ \begin{cases} uv= \sqrt[3]{2} \\ u^3+v^3=-2 \end{cases} \\
\begin{cases} u^3v^3=2 \\ u^3+v^3=-2 \end{cases} \\
t^2+2t+2=0\\
\left( t+1\right)^2+1=0\\
\left( t+1-i\right)\left( t+1+i\right)=0\\}\)


\(\displaystyle{ x= \sqrt[3]{-1+i} + \sqrt[3]{-1-i} \\
x_{1}= \sqrt[6]{2}\left(\cos{ \left( \frac{\pi}{4} + \frac{2k\pi}{3}\right) }+i\sin{ \left( \frac{\pi}{4} + \frac{2k\pi}{3}\right) }\right) + \sqrt[6]{2}\left(\cos{ \left( \frac{\pi}{4} + \frac{2k\pi}{3}\right) }-i\sin{ \left( \frac{\pi}{4} + \frac{2k\pi}{3}\right) }\right)}\)


\(\displaystyle{ x_{1}=2 \sqrt[6]{2}\cos{ \frac{\pi}{4} }\\
x_{2}=2\sqrt[6]{2}\cos{ \frac{11\pi}{12} }\\
x_{3}=2\sqrt[6]{2}\cos{ \frac{19\pi}{12} }\\}\)
MSZ98
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 30 gru 2018, o 19:59
Płeć: Mężczyzna
Lokalizacja: Kielce
Podziękował: 5 razy

Re: Problem z równaniem wielomianowym

Post autor: MSZ98 »

Wielkie dzięki mariuszm, Premislav oraz kerajs.

Na pewno poczytam sobie o wzorach Cardana, nigdy o tym nie słyszałem, a wstyd, bo studiuję na kierunku ścisłym, takie równania nie powinny sprawiać już problemu na poziomie maturalnym.

kerajs jeszcze raz dzięki, sprytnie to zauważyłeś i rzeczywiście to jest pierwiastek tego równania.
Natomiast mariuszm, nieźle się rozpisałeś, widzę że użyłeś jakichś dwóch dodatkowych zmiennych, ale muszę się lepiej temu przyjrzeć. No niestety jak sprawdzałem te x1, x2 i x3, to nie są pierwiastki tego równania. <- Są, tylko kalkulator był ustawiony na stopnie, a nie na radiany.

Według desmosa (programu do rysowania funkcji) pierwiastki powinny wynosić:
\(\displaystyle{ x _{1} = -2,168}\)
\(\displaystyle{ x _{2} = 0,581}\)
\(\displaystyle{ x _{2} = \sqrt[3]{4}}\) //Wspomniane przez kerajs

Jeszcze raz dzięki wszystkim za odpowiedzi.
Ostatnio zmieniony 21 cze 2019, o 19:52 przez MSZ98, łącznie zmieniany 1 raz.
Awatar użytkownika
Janusz Tracz
Użytkownik
Użytkownik
Posty: 4060
Rejestracja: 13 sie 2016, o 15:01
Płeć: Mężczyzna
Lokalizacja: hrubielowo
Podziękował: 79 razy
Pomógł: 1391 razy

Re: Problem z równaniem wielomianowym

Post autor: Janusz Tracz »

Według desmosa (programu do rysowania funkcji) pierwiastki powinny wynosić:
\(\displaystyle{ x _{1} = -2,168}\)
\(\displaystyle{ x _{2} = 0,581}\)
\(\displaystyle{ x _{2} = \sqrt[3]{4}}\) //Wspomniane przez kerajs
Ale to są przybliżenia a mariuszm, podał wartości dokładne jak je przybliżysz to wyjdzie to samo. Swoją drogą mariuszm wykorzystał wzory Cardana o których mówił Premislav a ich przydatność na maturze i studiach technicznych (gdzie wszystko się przybliża) jest mocno wątpliwa. Te wzory raczej dla pasjonatów.
Awatar użytkownika
Mariusz M
Użytkownik
Użytkownik
Posty: 6903
Rejestracja: 25 wrz 2007, o 01:03
Płeć: Mężczyzna
Lokalizacja: 53°02'N 18°35'E
Podziękował: 2 razy
Pomógł: 1246 razy

Re: Problem z równaniem wielomianowym

Post autor: Mariusz M »

Nie złamałem drugiej linii i zapis jest trochę nieczytelny
Awatar użytkownika
Janusz Tracz
Użytkownik
Użytkownik
Posty: 4060
Rejestracja: 13 sie 2016, o 15:01
Płeć: Mężczyzna
Lokalizacja: hrubielowo
Podziękował: 79 razy
Pomógł: 1391 razy

Re: Problem z równaniem wielomianowym

Post autor: Janusz Tracz »

Przy odpowiedniej dozie cierpliwości można jeszcze pokazać:

\(\displaystyle{ x_{1}=2 \sqrt[6]{2}\cos{ \frac{\pi}{4} }=\sqrt[3]{4}}\)

\(\displaystyle{ x_{2}=2 \sqrt[6]{2}\cos{ \frac{11\pi}{12} }=- \frac{1+ \sqrt{3} }{ \sqrt[3]{2} }}\)

\(\displaystyle{ x_{2}=2 \sqrt[6]{2}\cos{ \frac{19\pi}{12} }=\frac{ \sqrt{3}-1 }{ \sqrt[3]{2} }}\)
MSZ98
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 30 gru 2018, o 19:59
Płeć: Mężczyzna
Lokalizacja: Kielce
Podziękował: 5 razy

Re: Problem z równaniem wielomianowym

Post autor: MSZ98 »

Ooo.. bardzo przepraszam mariuszm, nie zauważyłem, że mam kalkulator ustawiony na stopnie, a nie na radiany, dzięki jeszcze raz. Wszystko się zgadza, wyniki są zupełnie poprawne, rozumiem już te wzory, to odpowiednik delty (wyróżnika) i miejsc zerowych dla równania trzeciego stopnia.
Awatar użytkownika
Mariusz M
Użytkownik
Użytkownik
Posty: 6903
Rejestracja: 25 wrz 2007, o 01:03
Płeć: Mężczyzna
Lokalizacja: 53°02'N 18°35'E
Podziękował: 2 razy
Pomógł: 1246 razy

Re: Problem z równaniem wielomianowym

Post autor: Mariusz M »

Janusz Tracz, co do równania trzeciego stopnia to

Wydaje mi się że nie istnieje żadna ogólna metoda rozwiązywania równań czwartego stopnia
która by nie wymagała rozwiązania równania trzeciego stopnia
jednak nie wiem jak to wykazać
Większość metod jakie widziałem wymaga rozwiązania równania szóstego stopnia
sprowadzalnego do równania trzeciego stopnia

Krysicki i Włodarski podają kilka ciekawych przykładów na równanie trzeciego stopnia

MSZ98,

Najpierw starasz się wyrugować wyraz z \(\displaystyle{ x^2}\)
Tutaj przydatny będzie wzór skróconego mnożenia

Zakładasz że pierwiastek równania jest w postaci sumy dwóch składników \(\displaystyle{ x=u+v}\),
podnosisz obustronnie do trzeciej potęgi korzystając z wzoru skróconego mnożenia na sześcian sumy ,
grupujesz prawą stronę równania i zauważasz że otrzymałeś równość w tej samej postaci
co równanie które chcesz rozwiązać
Porównujesz współczynniki i dostajesz układ równań który łatwo przekształcić w
wzory Vieta dla równania kwadratowego o pierwiastkach \(\displaystyle{ u^3}\) o \(\displaystyle{ v^3}\)

\(\displaystyle{ x^3+px+q=0\\
x=u+v\\
x^3=u^3+3u^2v+3uv^2+v^3\\
x^3=3uv\left( u+v\right)+u^3+v^3\\
x^3=3uvx+\left( u^3+v^3\right)\\
x^3-3uvx-\left( u^3+v^3\right)=0\\}\)


Porównując współczynniki dostajemy układ równań

\(\displaystyle{ \begin{cases} 3uv=-p \\ u^3+v^3=-q \end{cases}\\
\begin{cases} u^3+v^3=-q \\ u^3v^3=-\frac{p^3}{27} \end{cases} \\}\)


Otrzymaliśmy układ równań który jest wzorami Vieta dla równania kwadratowego o pierwiastkach
\(\displaystyle{ u^3}\) oraz \(\displaystyle{ v^3}\)

\(\displaystyle{ t^2+qt-\frac{p^3}{27}=0}\)

Rozwiązujesz równanie kwadratowe
Jeżeli znasz zespolone to nie musisz przypadku nieprzywiedlnego rozpatrywać osobno
korzystając z trygonometrii

Pierwiastki trzeciego stopnia z \(\displaystyle{ u^3}\) oraz \(\displaystyle{ v^3}\)
dobierasz tak aby był spełniony układ równań

\(\displaystyle{ \begin{cases} 3uv=-p \\ u^3+v^3=-q \end{cases}\\}\)

a szczególnie równanie

\(\displaystyle{ 3uv=-p}\)

Gdy już znajdziesz parę \(\displaystyle{ \left( u_{1},v_{1}\right)}\)
spełniającą układ równań \(\displaystyle{ \begin{cases} 3uv=-p \\ u^3+v^3=-q \end{cases}\\}\)
łatwo otrzymasz jeden pierwiastek równania
Pozostałe pierwiastki możesz otrzymać korzystając z pierwiastków trzeciego stopnia z jedynki

\(\displaystyle{ \varepsilon_{0}=1\\
\varepsilon_{1}=e^{ \frac{2i\pi}{3} }\\
\varepsilon_{2}=e^{ \frac{4i\pi}{3} }}\)


Pozostałe pary \(\displaystyle{ \left( u,v\right)}\)
spełniające układ równań \(\displaystyle{ \begin{cases} 3uv=-p \\ u^3+v^3=-q \end{cases}\\}\)
są w postaci \(\displaystyle{ \left( \varepsilon_{k}u_{1},\varepsilon_{m}v_{1}\right)}\)
Takich par jest 9 ale tylko trzy spełniają układ równań

Gdybyś nie znał zespolonych to aby znaleźć pozostałe pierwiastki musiałbyś podzielić
wielomian przez dwumian \(\displaystyle{ x-x_{1}}\)
i rozwiązać dodatkowe równanie kwadratowe


Analogiczne rozumowanie można przeprowadzić dla równań czwartego stopnia

Tutaj zakładasz że pierwiastek jest w postaci sumy trzech składników

Przydadzą się jednak podstawowe wiadomości o wielomianach symetrycznych
aby doprowadzić równość do takiej postaci aby móc porównać współczynniki
MSZ98
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 30 gru 2018, o 19:59
Płeć: Mężczyzna
Lokalizacja: Kielce
Podziękował: 5 razy

Problem z równaniem wielomianowym

Post autor: MSZ98 »

mariuszm no to teraz już nic nie wymaga wyjaśnień, wielkie dzięki za pomoc, rozumiem już o co chodzi. Zespolone umiem, studiuję elektrotechnikę.

Raz jeszcze dzięki. Problem uważam za rozwiązany, no ale nie ma sensu zamykać tematu, bo może ktoś ma jeszcze jakiś ciekawy sposób na takie rzeczy, także można poczekać.

Chyba najprościej jest zastosować tutaj właśnie te wzory Cardano, bo wystarczy deltę policzyć i miejsca zerowe są już w garści. Można to zaimplementować w jakimś programie przykładowo. Jednak ta metoda przedstawiona przez mariuszm wydaje mi się najbardziej intuicyjna. Nikt tej delty bez wzoru na kartce liczył nie będzie.
Awatar użytkownika
Mariusz M
Użytkownik
Użytkownik
Posty: 6903
Rejestracja: 25 wrz 2007, o 01:03
Płeć: Mężczyzna
Lokalizacja: 53°02'N 18°35'E
Podziękował: 2 razy
Pomógł: 1246 razy

Re: Problem z równaniem wielomianowym

Post autor: Mariusz M »

Aby mieć pewność że nie potrzebujesz wyjaśnień
przećwicz sobie tę metodę na jakichś przykładach

Ja kiedyś napisałem zarówno program do losowania współczynników
jak i do rozwiązywania równań wielomianowych do czwartego stopnia włącznie

Dla równań stopnia wielomianowych stopnia większego niż cztery
trzeba by było z jakichś metod numerycznych skorzystać


Wiesz coś o wielomianach symetrycznych ?

W skrócie wielomian jest symetryczny jeśli dowolna permutacja zmiennych nie zmienia wielomianu
Jeśli wiesz coś o wielomianach symetrycznych
to możemy spróbować uogólnić powyższy sposób na równania czwartego stopnia
ODPOWIEDZ