Clement's Theorem - albo coś podobnego.

Podzielność. Reszty z dzielenia. Kongruencje. Systemy pozycyjne. Równania diofantyczne. Liczby pierwsze i względnie pierwsze. NWW i NWD.
mirkaluk
Użytkownik
Użytkownik
Posty: 39
Rejestracja: 24 kwie 2012, o 15:15
Płeć: Kobieta
Lokalizacja: Katowice

Clement's Theorem - albo coś podobnego.

Post autor: mirkaluk »

Witajcie
Mam do udowodnienia następującą rzecz:
Pokaż, że dla każdego \(\displaystyle{ n>2, n}\) i \(\displaystyle{ n+2}\) są pierwsze dokładnie wtedy, gdy
\(\displaystyle{ (n-1)! \neq 0 \pmod{n}}\) i \(\displaystyle{ (n-1)! \neq 0 \pmod{n+2}}\).

Znalazłam takie dwa dokumenty:
Theorem 2
(strona 24) Theorem 16

Moge prosić o pomoc w naprowadzeniu / znalezieniu związku?
Ostatnio zmieniony 6 maja 2014, o 23:17 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Używaj LaTeXa do wszystkich wyrażeń matematycznych.
Awatar użytkownika
Zordon
Użytkownik
Użytkownik
Posty: 4977
Rejestracja: 12 lut 2008, o 21:42
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 75 razy
Pomógł: 910 razy

Clement's Theorem - albo coś podobnego.

Post autor: Zordon »

Jeśli \(\displaystyle{ n}\) jest złożone oraz \(\displaystyle{ n=ab}\) i dajmy na to \(\displaystyle{ a<b}\), to \(\displaystyle{ n| b!}\) oraz \(\displaystyle{ b<n-1}\). Tego rodzaju argument zadziała w tym zadaniu.
mirkaluk
Użytkownik
Użytkownik
Posty: 39
Rejestracja: 24 kwie 2012, o 15:15
Płeć: Kobieta
Lokalizacja: Katowice

Clement's Theorem - albo coś podobnego.

Post autor: mirkaluk »

Ok, dzięki, zrozumiałam!

Mam jeszcze takie dwa zadania. Mam jakieś zaćmienie, bo ogólnie teoria liczb mi idzie, a nad tymi zadaniami siedzę już jakiś czas. Proszę o pomoc.
Niech p będzie nieparzystą liczbą pierwszą.
1) Pokaż, że \(\displaystyle{ a \neq 0 \pmod{p}}\) jest liczbą kwadratową modulo \(\displaystyle{ p \Leftrightarrow a^* \pmod{p}}\) jest liczbą kwadratową, \(\displaystyle{ aa^* = 1\pmod{p}}\).
2) Udowodnij, że \(\displaystyle{ -1}\) nie jest liczbą kwadratową modulo \(\displaystyle{ p=3\pmod{4}}\).
Ostatnio zmieniony 6 maja 2014, o 23:19 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Niepoprawnie napisany kod LaTeX-a. Proszę zapoznaj się z http://matematyka.pl/178502.htm .
Awatar użytkownika
Zordon
Użytkownik
Użytkownik
Posty: 4977
Rejestracja: 12 lut 2008, o 21:42
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 75 razy
Pomógł: 910 razy

Clement's Theorem - albo coś podobnego.

Post autor: Zordon »

1) wszystkie równości modulo \(\displaystyle{ p}\). Skoro \(\displaystyle{ a=x^2}\) dla pewnego \(\displaystyle{ x\neq 0}\), to \(\displaystyle{ a^{-1}=(x^2)^{-1}=(x^{-1})^2}\).
2) Tutaj przydaje się fakt, że \(\displaystyle{ a\neq 0}\) jest kwadratem mod p wtedy i tylko wtedy gdy \(\displaystyle{ a^{(p-1)/2}=1}\) (znowu mod p). I tutaj latwo wychodzi, ze \(\displaystyle{ (-1)^{(p-1)/2}=-1}\)
mirkaluk
Użytkownik
Użytkownik
Posty: 39
Rejestracja: 24 kwie 2012, o 15:15
Płeć: Kobieta
Lokalizacja: Katowice

Clement's Theorem - albo coś podobnego.

Post autor: mirkaluk »

Bardzo dziękuję.
ODPOWIEDZ