równanie z liczbami wymiernymi

Podzielność. Reszty z dzielenia. Kongruencje. Systemy pozycyjne. Równania diofantyczne. Liczby pierwsze i względnie pierwsze. NWW i NWD.
theoldwest
Użytkownik
Użytkownik
Posty: 251
Rejestracja: 2 gru 2012, o 20:05
Płeć: Mężczyzna
Lokalizacja: Great Plains
Podziękował: 86 razy

równanie z liczbami wymiernymi

Post autor: theoldwest »

\(\displaystyle{ a,b,c}\) są wymierne, \(\displaystyle{ d \in \mathbb{R}}\) nie jest sześcianem liczby wymiernej.

Rozwiązać równanie \(\displaystyle{ a+b\sqrt[3]{d}+c\sqrt[3]{d^2}=0}\) w podanym zbiorze.
Piotr Rutkowski
Użytkownik
Użytkownik
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 390 razy

równanie z liczbami wymiernymi

Post autor: Piotr Rutkowski »

Jeśli równanie ma rozwiązanie, to oczywiście:
\(\displaystyle{ -a=b\sqrt[3]{d}+c\sqrt[3]{d^{2}}=(bx+cx^{2})\in \mathbb{Q}}\)

Oczywiście z założenia \(\displaystyle{ x,x^{2}\notin \mathbb{Q}}\)
Niech \(\displaystyle{ f(x)=cx^{2}+bx+a}\). Wiemy, że \(\displaystyle{ b^{2}\geq 4ac}\), inaczej rozwiązań w \(\displaystyle{ \mathbb{R}}\) nie ma.
\(\displaystyle{ x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2c}}\)
Zauważ, że \(\displaystyle{ (x,x^{2}\notin \mathbb{Q})\iff (\sqrt{b^{2}-4ac}\notin \mathbb{Q})}\), czyli jeśli \(\displaystyle{ e\in \mathbb{Q}}\) nie jest możliwe, by \(\displaystyle{ b^{2}-4ac=e^{2}}\)

I nie bardzo wiem jak to uprościć...
Wynikiem będzie każda czwórka \(\displaystyle{ (a,b,c,(\frac{-b \pm \sqrt{b^{2}-4ac}}{2c})^{3})}\) gdzie \(\displaystyle{ b^{2}\geq 4ac}\) oraz \(\displaystyle{ \forall_{e\in \mathbb{Q}}e^{2}\neq b^{2}-4ac}\).
Szczególnie ostatni warunek ciężko jest jakoś sensownie opisać...
theoldwest
Użytkownik
Użytkownik
Posty: 251
Rejestracja: 2 gru 2012, o 20:05
Płeć: Mężczyzna
Lokalizacja: Great Plains
Podziękował: 86 razy

równanie z liczbami wymiernymi

Post autor: theoldwest »

Ale \(\displaystyle{ x^2}\) nie musi być niewymierne.
Piotr Rutkowski
Użytkownik
Użytkownik
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 390 razy

równanie z liczbami wymiernymi

Post autor: Piotr Rutkowski »

Zarówno \(\displaystyle{ x}\) jak i \(\displaystyle{ x^{2}}\) nie mogą być wymierne.
theoldwest
Użytkownik
Użytkownik
Posty: 251
Rejestracja: 2 gru 2012, o 20:05
Płeć: Mężczyzna
Lokalizacja: Great Plains
Podziękował: 86 razy

równanie z liczbami wymiernymi

Post autor: theoldwest »

No to nie rozumiem - wydawało mi się, że podstawiasz, że \(\displaystyle{ x=\sqrt[3]{d}}\) skąd \(\displaystyle{ x^2=\sqrt[3]{d^2}}\) no ale gdy np. \(\displaystyle{ d=2^{\frac{3}{2}}}\), to wtedy \(\displaystyle{ x^2=\sqrt[3]{(2^{\frac{3}{2}})^2}=2}\)
Piotr Rutkowski
Użytkownik
Użytkownik
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 390 razy

równanie z liczbami wymiernymi

Post autor: Piotr Rutkowski »

Tak dobrze zrozumiałeś podstawienie, może niedokładnie wyjaśniłem:
Musimy założyć, że \(\displaystyle{ x,x^{2}\notin \mathbb{Q}}\), bo z założenia \(\displaystyle{ x\notin \mathbb{Q}}\), ale \(\displaystyle{ bx+cx^{2} \in \mathbb{Q}}\), więc nie może być \(\displaystyle{ cx^{2}\in \mathbb{Q}}\), co daje \(\displaystyle{ x^{2}\notin \mathbb{Q}}\).

p.s. Czy to, że z założenia wynika, że \(\displaystyle{ x\notin \mathbb{Q}}\) jest jasne?
theoldwest
Użytkownik
Użytkownik
Posty: 251
Rejestracja: 2 gru 2012, o 20:05
Płeć: Mężczyzna
Lokalizacja: Great Plains
Podziękował: 86 razy

równanie z liczbami wymiernymi

Post autor: theoldwest »

Piotr Rutkowski pisze:Tak dobrze zrozumiałeś podstawienie, może niedokładnie wyjaśniłem:
Musimy założyć, że \(\displaystyle{ x,x^{2}\notin \mathbb{Q}}\), bo z założenia \(\displaystyle{ x\notin \mathbb{Q}}\), ale \(\displaystyle{ bx+cx^{2} \in \mathbb{Q}}\), więc nie może być \(\displaystyle{ cx^{2}\in \mathbb{Q}}\), co daje \(\displaystyle{ x^{2}\notin \mathbb{Q}}\).
ale może być \(\displaystyle{ b=0}\) i wtedy mamy \(\displaystyle{ bx+cx^{2} \in \mathbb{Q}}\) dla \(\displaystyle{ x}\) niewymiernych takich, że \(\displaystyle{ x^2}\) jest wymierne
Piotr Rutkowski pisze:
p.s. Czy to, że z założenia wynika, że \(\displaystyle{ x\notin \mathbb{Q}}\) jest jasne?
tak
Piotr Rutkowski
Użytkownik
Użytkownik
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 390 razy

równanie z liczbami wymiernymi

Post autor: Piotr Rutkowski »

Ok, masz rację, powinieneś oddzielnie rozważyć przypadek \(\displaystyle{ b=0}\), ale jest on trywialny. Przypadek \(\displaystyle{ b\neq 0}\) jest rozwiązany w 1 poście.
theoldwest
Użytkownik
Użytkownik
Posty: 251
Rejestracja: 2 gru 2012, o 20:05
Płeć: Mężczyzna
Lokalizacja: Great Plains
Podziękował: 86 razy

równanie z liczbami wymiernymi

Post autor: theoldwest »

Faktycznie trochę dziwne to zadanie tj. ciężko konkretnie to ująć chyba że źle przepisałem jak zadawali. Niemniej jednak wielkie dzięki za pomoc.
ODPOWIEDZ