Szereg z arcusem

Definicja szeregów liczbowych, kryteria zbieżności szeregów. Suma szeregu i iloczyn Cauchy'ego szeregów. Iloczyny nieskończone.
Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 11263
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 3140 razy
Pomógł: 746 razy

Szereg z arcusem

Post autor: mol_ksiazkowy »

Udowodnić, że \(\displaystyle{ \sum_{n=1}^{\infty} \arctg( \frac{2}{n^2} ) = \frac{3\pi}{4} }\)
Awatar użytkownika
Janusz Tracz
Użytkownik
Użytkownik
Posty: 4060
Rejestracja: 13 sie 2016, o 15:01
Płeć: Mężczyzna
Lokalizacja: hrubielowo
Podziękował: 79 razy
Pomógł: 1391 razy

Re: Szereg z arcusem

Post autor: Janusz Tracz »

pomysł:    
janusz47
Użytkownik
Użytkownik
Posty: 7910
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 30 razy
Pomógł: 1670 razy

Re: Szereg z arcusem

Post autor: janusz47 »

\(\displaystyle{ \sum_{n=1}^{\infty}\arctg\left(\frac{2}{n^2}\right): }\)

\(\displaystyle{ \tg(\alpha - \beta) = \frac{\tg(\alpha) - \tg(\beta)}{1 + \tg(\alpha)\tg(\beta)} }\)

\(\displaystyle{ \arctg\left(\tg(\alpha - \beta)\right) = \arctg\left(\frac{\tg(\alpha) - \tg(\beta)}{1 + \tg(\alpha)\tg(\beta)}\right) }\)

\(\displaystyle{ \alpha - \beta = \arctg\left(\frac{\tg(\alpha) - \tg(\beta)}{1 + \tg(\alpha)\tg(\beta)}\right) }\)

\(\displaystyle{ \frac{2}{n^2} = \frac{(n+1)-(n-1)}{1 + (n+1)(n-1)} }\)

Niech

\(\displaystyle{ \tg(\alpha) = n+1, \ \ \tg(\beta) = n-1. }\)

Stąd

\(\displaystyle{ \alpha = \arctg(n+1), \ \ \beta = \arctg(n-1) }\)

\(\displaystyle{ s = \sum_{n=1}^{\infty}\arctg\left(\frac{2}{n^2}\right) = \sum_{n=1}^{\infty}[\arctg(n+1) - \arctg(n-1)] = \arctg(2)-\arctg(0) + \arctg(3)-\arctg(1)+ \arctg(4)-\arctg(2)+ \arctg(5) - \arctg(3)+\arctg(6)-\arctg(4)+...+ \arctg(n+1)-\arctg(n-1)+... = -\arctg(0) -\arctg(1) + \arctg(n-1) + \arctg(n+1) +... }\)

\(\displaystyle{ s = \lim_{n \to \infty} [\arctg(0)- \arctg(1) +\arctg(n-1)+\arctg(n+1)] = 0 -\frac{\pi}{4}+ \frac{\pi}{2}+ \frac{\pi}{2} = \frac{3\pi}{4}.}\)
ODPOWIEDZ