Okres małych drgań tarczy

Ruch drgający, wahadła i oscylatory. Ruch falowy i stowarzyszone z nim zjawiska. Zjawiska akustyczne.
pawel89
Użytkownik
Użytkownik
Posty: 38
Rejestracja: 2 lut 2008, o 21:47
Płeć: Mężczyzna
Lokalizacja: Kielce
Podziękował: 6 razy
Pomógł: 5 razy

Okres małych drgań tarczy

Post autor: pawel89 » 13 sty 2022, o 10:16

Witam. Proszę o pomoc w następującym zadaniu.
Jednorodna tarcza walcowa o promieniu \(\displaystyle{ R}\) zawieszona jest na poziomej osi obrotu przechodzącej przez jej brzeg. Obliczyć okres małych drgań tarczy, jeżeli logarytmiczny dekrement tłumienia drgań wynosi \(\displaystyle{ λ}\).
Ostatnio zmieniony 13 sty 2022, o 10:36 przez AiDi, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

janusz47
Użytkownik
Użytkownik
Posty: 6886
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 22 razy
Pomógł: 1492 razy

Re: Okres małych drgań tarczy

Post autor: janusz47 » 13 sty 2022, o 17:49

Okres drgań tłumionych \(\displaystyle{ T }\) wyznaczamy ze wzoru na częstotliwość kołową:

\(\displaystyle{ \omega = \sqrt{\omega^2_{0} -\beta^2} \ \ (1)}\)

Logarytmiczny dekrement tłumienia:

\(\displaystyle{ \Lambda = \beta\cdot T. }\)

Równanie \(\displaystyle{ (1) }\) przyjmuje postać:

\(\displaystyle{ \frac{4\pi^2}{T^2} = \frac{4\pi^2}{T^2_{0}} - \frac{\Lambda^2}{T^2} \ \ (2) }\)

Okres drgań nietłumionych \(\displaystyle{ T_{0} }\) wyznaczamy ze wzoru na okres wahadła fizycznego:

\(\displaystyle{ T_{0} = 2\pi \sqrt{\frac{I}{m\cdot g \cdot R}} \ \ (3)}\)

Moment bezwładności \(\displaystyle{ I }\) względem punktu zaczepienia tarczy, wyznaczamy z twierdzenia Steinera:

\(\displaystyle{ I = M_{0} + M_{R} }\)

\(\displaystyle{ I = \frac{1}{2}m\cdot R^2 + m\cdot R^2 = \frac{3}{2}\cdot m\cdot R^2 \ \ (4) }\)

Z równań \(\displaystyle{ (3 ) (4) }\)

\(\displaystyle{ T_{0} = 2\pi \sqrt{\frac{3R}{2 g}} }\)


Z równania \(\displaystyle{ (2) }\) wyznaczamy okres dgań tarczy:


\(\displaystyle{ T = \ \ ...}\)

Odpowiedź: \(\displaystyle{ T = \sqrt{\frac{3R}{2 g}(4\pi^2 + \Lambda^2)}. }\)

ODPOWIEDZ