Model Solowa

Popyt, podaż, kapitalizacja, rynki finansowe. Mikroekonomia. makroekonomia, finanse itp...
annnamale
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 15 maja 2019, o 20:33
Płeć: Kobieta
Lokalizacja: Poznań

Model Solowa

Post autor: annnamale » 23 maja 2019, o 16:52

Niech \(4 \%\) stopa realnego wzrostu PKB na osobę, \(2 \%\) st. r. wz. kapitału na osobę, \(-0,5 \%\) st. wz. liczby przepracowanych godzin na osobę, \(0,2\%\) st. wz. populacji, \(0,3 \%\) st. wz. zatrudnienia oraz \(60 \%\) udział wynagrodzeń w PKB. Wyznacz procentowy udział postępu technologicznego w realnym wzroście PKB.

Czy znacie jakaś dobra literaturę która pomoże rozwiązać zadanie?
Mam jakiś pomysł i obliczenia, ale wychodzą mi jakieś głupoty

Awatar użytkownika
Chewbacca97
Użytkownik
Użytkownik
Posty: 454
Rejestracja: 9 lis 2013, o 22:09
Płeć: Mężczyzna

Re: Model Solowa

Post autor: Chewbacca97 » 30 cze 2019, o 17:28

To chyba nie jest trudne. Wiesz z jakiego wzoru masz skorzystać oraz co oznaczają zmienne w tym wzorze?

Co do literatury, ja korzystałem z:
- Jones, C.I. and Vollrath, D. (2013). Introduction to economic growth. New York: W.W. Norton & Company (do znalezienia w internecie)

Możesz również zajrzeć na pdfy ze strony SGH, np. kilka pierwszych rozdziałów z tego: http://web.sgh.waw.pl/~mproch/Z_teoria_ ... zrostu.pdf

Tak na prawdę w większości podręczników do makro znajdziesz coś o modelach wzrostu gospodarczego.

annnamale
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 15 maja 2019, o 20:33
Płeć: Kobieta
Lokalizacja: Poznań

Re: Model Solowa

Post autor: annnamale » 4 lip 2019, o 21:21

Dzięki za literaturę, mam nadzieję, że mi się rozjaśni

Co do zadania. Korzystam ze wzoru \(\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} +\left( 1- \alpha \right) \frac{\Delta L}{L}\).

W zadaniu mam dane per capita, zatem:
\(\frac{\Delta Y}{Y} = 4 \% + 0,2 \% + 4 \% \cdot 0,2 \% = 4,208 \%\)

\(\frac{\Delta K}{K} = 2 \% + 0,2 \% + 2 \% \cdot 0,2 \% = 2,204 \%\)

\(\frac{\Delta L}{L} = 0,3 \% -0,5 \% - 0,3 \% \cdot 0,5 \% = -0,2015 \%\)

\(\alpha = 40 \%\)

Zbierając mamy:
\(\frac{\Delta A}{A} = 3,4473 \%\)


Czy moje rozumowanie jest ok?

Awatar użytkownika
Chewbacca97
Użytkownik
Użytkownik
Posty: 454
Rejestracja: 9 lis 2013, o 22:09
Płeć: Mężczyzna

Re: Model Solowa

Post autor: Chewbacca97 » 7 lip 2019, o 18:17

Nie jestem pewien w jaki sposób policzyłaś \(\frac{\Delta Y}{Y}\), \(\frac{\Delta K}{K}\) i \(\frac{\Delta L}{L}\). Ogólnie chodzi o to, że dzięki temu podejściu można właśnie obliczyć stopę wzrostu technologicznego (Solow residual albo TFP), bo wszystko inne możesz sobie wziąć z danych statystycznych - a z technologią mamy problem.

Po ponownym przeczytaniu zadania, uważam że jest conajmniej dziwne. Nie do końca jasne jest z jakiej funkcji produkcji mamy skorzystać - nie wiem czy mamy skorzystać ze wszystkich danych i w ten sposób dojść do funkcji produkcji czy na przykład mamy tak dużo danych i właśnie należy odsiać te niepotrzebne. W zadaniu jest rozróżnienie pomiędzy przepracowanymi godzinami, wzrostem populacji i zatrudnienia. W moim odczuciu autor pracuje z jakimś jednym podręcznikiem i zadanie jest w zgodzie z notacją tam przyjętą - tak jak mówię, bez funkcji produkcji jest to w moim odczuciu trudne zadanie (lub zapomniałem jak coś takiego ugryźć ).

Odnośnie Twojego rozwiązania, nie jestem pewien czy dobrze skorzystałaś z danych "per capita". Tj. schemat rozwiązania zwykle przebiega w następujący sposób:

funkcja produkcji (na przykład): \(Y = Af(K,L) = AK^{\alpha}L^{1-\alpha}\)

czyli mamy to, co napisałaś: \(\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} +\left( 1- \alpha \right) \frac{\Delta L}{L}\)

Czyli standardowo poziom produkcji zależy od wielkości kapitału, ilości ludzi zatrudnionych oraz poziomu technologicznego.

Potem mamy "na osobę": \(y=\frac{Y}{L} = \frac{AK^{\alpha}L^{1-\alpha}}{L} = Ak^{\alpha}\), gdzie \(k=\frac{K}{L}\).

czyli wzrost: \(\frac{\Delta y}{y} = \frac{\Delta A}{A} + \alpha \frac{\Delta k}{k}\).

Stąd masz \(\frac{\Delta A}{A}\), bo resztę masz daną w zadaniu.

Co robimy dalej?

annnamale
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 15 maja 2019, o 20:33
Płeć: Kobieta
Lokalizacja: Poznań

Re: Model Solowa

Post autor: annnamale » 7 lip 2019, o 19:34

Może nie będe tłumaczyć jak to liczyłam, bo kombinowałam na milion sposobów i chyba rzeczywiście nie wiem jak to powinno wyglądać.


Widzę teraz, że z tego \(\frac{\Delta y}{y} = \frac{\Delta A}{A} + \alpha \frac{\Delta k}{k}\) możemy obliczyć \(\frac{\Delta A}{A}\). Mamy:

\(\frac{\Delta A}{A} = 4 \% - 40 \% \cdot 2 \% = 3,2 \%\).

No i jak wyżej, dalej mam problem. Nie wiem jak ugryżć te wszystkie dane

ODPOWIEDZ