Model Solowa

Popyt, podaż, kapitalizacja, rynki finansowe. Mikroekonomia. makroekonomia, finanse itp...
annnamale
Użytkownik
Użytkownik
Posty: 7
Rejestracja: 15 maja 2019, o 20:33
Płeć: Kobieta
Lokalizacja: Poznań
Podziękował: 3 razy

Model Solowa

Post autor: annnamale » 23 maja 2019, o 16:52

Niech \(\displaystyle{ 4 \%}\) stopa realnego wzrostu PKB na osobę, \(\displaystyle{ 2 \%}\) st. r. wz. kapitału na osobę, \(\displaystyle{ -0,5 \%}\) st. wz. liczby przepracowanych godzin na osobę, \(\displaystyle{ 0,2\%}\) st. wz. populacji, \(\displaystyle{ 0,3 \%}\) st. wz. zatrudnienia oraz \(\displaystyle{ 60 \%}\) udział wynagrodzeń w PKB. Wyznacz procentowy udział postępu technologicznego w realnym wzroście PKB.

Czy znacie jakaś dobra literaturę która pomoże rozwiązać zadanie?
Mam jakiś pomysł i obliczenia, ale wychodzą mi jakieś głupoty

Awatar użytkownika
Chewbacca97
Użytkownik
Użytkownik
Posty: 456
Rejestracja: 9 lis 2013, o 22:09
Płeć: Mężczyzna
Podziękował: 31 razy
Pomógł: 120 razy

Re: Model Solowa

Post autor: Chewbacca97 » 30 cze 2019, o 17:28

To chyba nie jest trudne. Wiesz z jakiego wzoru masz skorzystać oraz co oznaczają zmienne w tym wzorze?

Co do literatury, ja korzystałem z:
- Jones, C.I. and Vollrath, D. (2013). Introduction to economic growth. New York: W.W. Norton & Company (do znalezienia w internecie)

Możesz również zajrzeć na pdfy ze strony SGH, np. kilka pierwszych rozdziałów z tego: http://web.sgh.waw.pl/~mproch/Z_teoria_ ... zrostu.pdf

Tak na prawdę w większości podręczników do makro znajdziesz coś o modelach wzrostu gospodarczego.

annnamale
Użytkownik
Użytkownik
Posty: 7
Rejestracja: 15 maja 2019, o 20:33
Płeć: Kobieta
Lokalizacja: Poznań
Podziękował: 3 razy

Re: Model Solowa

Post autor: annnamale » 4 lip 2019, o 21:21

Dzięki za literaturę, mam nadzieję, że mi się rozjaśni

Co do zadania. Korzystam ze wzoru \(\displaystyle{ \frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} +\left( 1- \alpha \right) \frac{\Delta L}{L}}\).

W zadaniu mam dane per capita, zatem:
\(\displaystyle{ \frac{\Delta Y}{Y} = 4 \% + 0,2 \% + 4 \% \cdot 0,2 \% = 4,208 \%}\)

\(\displaystyle{ \frac{\Delta K}{K} = 2 \% + 0,2 \% + 2 \% \cdot 0,2 \% = 2,204 \%}\)

\(\displaystyle{ \frac{\Delta L}{L} = 0,3 \% -0,5 \% - 0,3 \% \cdot 0,5 \% = -0,2015 \%}\)

\(\displaystyle{ \alpha = 40 \%}\)

Zbierając mamy:
\(\displaystyle{ \frac{\Delta A}{A} = 3,4473 \%}\)


Czy moje rozumowanie jest ok?

Awatar użytkownika
Chewbacca97
Użytkownik
Użytkownik
Posty: 456
Rejestracja: 9 lis 2013, o 22:09
Płeć: Mężczyzna
Podziękował: 31 razy
Pomógł: 120 razy

Re: Model Solowa

Post autor: Chewbacca97 » 7 lip 2019, o 18:17

Nie jestem pewien w jaki sposób policzyłaś \(\displaystyle{ \frac{\Delta Y}{Y}}\), \(\displaystyle{ \frac{\Delta K}{K}}\) i \(\displaystyle{ \frac{\Delta L}{L}}\). Ogólnie chodzi o to, że dzięki temu podejściu można właśnie obliczyć stopę wzrostu technologicznego (Solow residual albo TFP), bo wszystko inne możesz sobie wziąć z danych statystycznych - a z technologią mamy problem.

Po ponownym przeczytaniu zadania, uważam że jest conajmniej dziwne. Nie do końca jasne jest z jakiej funkcji produkcji mamy skorzystać - nie wiem czy mamy skorzystać ze wszystkich danych i w ten sposób dojść do funkcji produkcji czy na przykład mamy tak dużo danych i właśnie należy odsiać te niepotrzebne. W zadaniu jest rozróżnienie pomiędzy przepracowanymi godzinami, wzrostem populacji i zatrudnienia. W moim odczuciu autor pracuje z jakimś jednym podręcznikiem i zadanie jest w zgodzie z notacją tam przyjętą - tak jak mówię, bez funkcji produkcji jest to w moim odczuciu trudne zadanie (lub zapomniałem jak coś takiego ugryźć ).

Odnośnie Twojego rozwiązania, nie jestem pewien czy dobrze skorzystałaś z danych "per capita". Tj. schemat rozwiązania zwykle przebiega w następujący sposób:

funkcja produkcji (na przykład): \(\displaystyle{ Y = Af(K,L) = AK^{\alpha}L^{1-\alpha}}\)

czyli mamy to, co napisałaś: \(\displaystyle{ \frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} +\left( 1- \alpha \right) \frac{\Delta L}{L}}\)

Czyli standardowo poziom produkcji zależy od wielkości kapitału, ilości ludzi zatrudnionych oraz poziomu technologicznego.

Potem mamy "na osobę": \(\displaystyle{ y=\frac{Y}{L} = \frac{AK^{\alpha}L^{1-\alpha}}{L} = Ak^{\alpha}}\), gdzie \(\displaystyle{ k=\frac{K}{L}}\).

czyli wzrost: \(\displaystyle{ \frac{\Delta y}{y} = \frac{\Delta A}{A} + \alpha \frac{\Delta k}{k}}\).

Stąd masz \(\displaystyle{ \frac{\Delta A}{A}}\), bo resztę masz daną w zadaniu.

Co robimy dalej?

annnamale
Użytkownik
Użytkownik
Posty: 7
Rejestracja: 15 maja 2019, o 20:33
Płeć: Kobieta
Lokalizacja: Poznań
Podziękował: 3 razy

Re: Model Solowa

Post autor: annnamale » 7 lip 2019, o 19:34

Może nie będe tłumaczyć jak to liczyłam, bo kombinowałam na milion sposobów i chyba rzeczywiście nie wiem jak to powinno wyglądać.


Widzę teraz, że z tego \(\displaystyle{ \frac{\Delta y}{y} = \frac{\Delta A}{A} + \alpha \frac{\Delta k}{k}}\) możemy obliczyć \(\displaystyle{ \frac{\Delta A}{A}}\). Mamy:

\(\displaystyle{ \frac{\Delta A}{A} = 4 \% - 40 \% \cdot 2 \% = 3,2 \%}\).

No i jak wyżej, dalej mam problem. Nie wiem jak ugryżć te wszystkie dane

ODPOWIEDZ