Oszacowanie błędu interpolacji

Przybliżanie, metoda najmniejszych kwadratów, wielomiany interpolacyjne i inne.
Awatar użytkownika
s1d
Użytkownik
Użytkownik
Posty: 38
Rejestracja: 18 paź 2007, o 19:51
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2 razy
Pomógł: 16 razy

Oszacowanie błędu interpolacji

Post autor: s1d » 7 sty 2010, o 00:23

Witam!

Mam za zadanie obliczyć błąd interpolacji w danym przedziale posiadając funkcję interpolowaną w postaci analitycznej. Wiem, że wzór na błąd oznacza się jako
\(\displaystyle{ \epsilon(x) = f(x) - W_{n}(x)}\)

Na początku myślałem o całce w przedziale interpolowania z funkcji \(\displaystyle{ \epsilon (x)}\), ale nie jestem pewien poprawności tej metody. Dodam, że implementuję obliczanie błędu w programie, który dokonuje interpolacji funkcji. Nie mam problemu w wyznaczeniem funkcji pierwotnych interpolującej i interpolowanej. Czy też może błąd to powinna być całka z modułu \(\displaystyle{ \epsilon (x)}\)? Tylko tu może byłyby problemy jakieś z policzeniem nienumerycznym.

Spotkałem się również gdzieś w internecie z opisem, aby obliczyć maksymalną różnicę pomiędzy wartością funkcji interpolowanej i interpolującej i to będzie błąd interpolacji. Ale to z kolei nie wydaje mi się do końca poprawne...

Bardzo proszę o jakieś wskazówki odnośnie w miarę bezproblemowego obliczania tegoż błędu.

Pozdrawiam

bstq
Użytkownik
Użytkownik
Posty: 319
Rejestracja: 7 lut 2008, o 12:45
Płeć: Mężczyzna
Lokalizacja: Warszawa
Pomógł: 67 razy

Oszacowanie błędu interpolacji

Post autor: bstq » 7 sty 2010, o 12:39

yyy ja bym liczyl błąd względny:
\(\displaystyle{ \sum_{i=1}^{k}\frac{\left|f(x_{i})-W(x_{i})\right|}{f(x_{i})},\text{ gdzie }x_{i}\text{-węzły w których interpolujesz}}\)
albo:
\(\displaystyle{ \max\left\{ \frac{\left|f(x_{i})-W(x_{i})\right|}{f(x_{i})}\right\}}\),
jesli funkcja nie jest tylko dodatnia, to zamiast \(\displaystyle{ f(x_{i})}\) możesz brać moduł z tego (w mianowniku)

nie chodzi o to w jakiej metryce policzysz ten błąd, bo metryki w przestrzeni skończenie wymiarowej są równoważne, chodzi o to, że jak masz kilka funkcji aproksymujących to możesz porównywać błędy między sobą, a dobrze by było żeby wszystkie błędy były liczone tak samo, nie ważne jak

Dawidq
Użytkownik
Użytkownik
Posty: 16
Rejestracja: 25 lis 2008, o 10:36
Płeć: Mężczyzna
Lokalizacja: ldz
Podziękował: 1 raz

Oszacowanie błędu interpolacji

Post autor: Dawidq » 1 maja 2010, o 17:02

bstq
Ale te dwa wzory co napisałeś to jest lipa bo zawsze da błąd równy zero...
W interpolacji funkcja którą przybliżamy musi przechodzić przez węzły... a skoro przez nie przechodzi to w węzłach ma taką samą wartość jak funkcja przybliżana... zatem błąd będzie równy zero a już na pewno będzie nieporównywalnie mniejszy od błędów pomiędzy węzłami.

bstq
Użytkownik
Użytkownik
Posty: 319
Rejestracja: 7 lut 2008, o 12:45
Płeć: Mężczyzna
Lokalizacja: Warszawa
Pomógł: 67 razy

Oszacowanie błędu interpolacji

Post autor: bstq » 2 maja 2010, o 13:41

ok zgadzam sie - tam zamiast sumy powinna byc calka, a zamiast x_i powinien byc x - wzor na blad bralem nie z interpolacji tylko napisalem analogicznie do wzorow dla macierzy

Dawidq
Użytkownik
Użytkownik
Posty: 16
Rejestracja: 25 lis 2008, o 10:36
Płeć: Mężczyzna
Lokalizacja: ldz
Podziękował: 1 raz

Oszacowanie błędu interpolacji

Post autor: Dawidq » 2 maja 2010, o 16:21

Ok. to ma sens.
A dla aproksymacji chyba będzie tak samo?

ODPOWIEDZ