Macierz odwrotna

Dział utworzony głównie z myślą o tych, którzy studiują lub zamierzają studiować kierunki ścisłe. Zakres materiału to szeroko rozumiane gałęzie algebry.
agnieszka043
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 15 gru 2019, o 20:24
Płeć: Kobieta
wiek: 19

Macierz odwrotna

Post autor: agnieszka043 » 13 sty 2020, o 22:01

Mam kilka zadań dotyczących macierzy odwrotnych
1. Dana jest macierz kwadratowa \(\displaystyle{ A}\), taka że \(\displaystyle{ A^2}\) jest macierzą zerową. Wyjaśnić, dlaczego macierz \(\displaystyle{ A}\) nie jest odwracalna.
2. Niech \(\displaystyle{ A}\) będzie macierzą kwadratową, taką że \(\displaystyle{ |A^k|= 1}\) dla pewnej liczby \(\displaystyle{ k \in\NN}\).
Wykazać, że \(\displaystyle{ |A^2|= 1}\).

nawet nie wiem jak sie za to zabrać, jakieś wskazówki? rozwiązanie?
Ostatnio zmieniony 13 sty 2020, o 22:20 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Całe wyrażenia matematyczne umieszczaj w tagach [latex] [/latex].
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 14509
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 89 razy
Pomógł: 4780 razy

Re: Macierz odwrotna

Post autor: Premislav » 13 sty 2020, o 22:06

1. Przypuśćmy nie wprost, że istnieje taka macierz kwadratowa \(\displaystyle{ B}\), że
\(\displaystyle{ AB=BA=I}\). Wtenczas (z łączności mnożenia macierzy)
\(\displaystyle{ I=I^{2}=(BA)(AB)=B\left(A^{2}\right)B=B\textbf{0}B=\textbf{0}}\),
gdzie \(\displaystyle{ \textbf{0}}\) oznacza macierz zerową. Jest to oczywista sprzeczność, która kończy dowód.

Jan Kraszewski
Administrator
Administrator
Posty: 25966
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4349 razy

Re: Macierz odwrotna

Post autor: Jan Kraszewski » 13 sty 2020, o 22:24

1 inaczej. Gdyby macierz \(\displaystyle{ A}\) była odwracalna, to \(\displaystyle{ \det A\ne 0}\). Ale \(\displaystyle{ 0=\det A^2=(\det A)^2.}\) Sprzeczność.

JK

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 14509
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 89 razy
Pomógł: 4780 razy

Re: Macierz odwrotna

Post autor: Premislav » 13 sty 2020, o 22:25

2. To nie jest w ogólności prawda, póki nie ustalimy, nad jakim ciałem jest macierz, jeśli nad \(\displaystyle{ \RR}\), to przechodzi. Tymczasem w przypadku (nie tylko) macierzy o wyrazach z \(\displaystyle{ \CC}\) może być niezły psikus. Choćby taki. Niechaj
\(\displaystyle{ A=\left(\begin{array}{cc}\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}&0\\0&\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}\end{array}\right)}\)
Wtedy ze wzoru na potęgowanie macierzy diagonalnej i ze wzoru de Moivre'a nietrudno uzyskać, że
\(\displaystyle{ A^{2}=\left(\begin{array}{cc}i&0\\0&i \end{array}\right)}\)
a to ma wyznacznik równy \(\displaystyle{ -1}\), z drugiej strony analogicznie uzyskujemy \(\displaystyle{ \mathrm{det} A^{4}=1}\).

ODPOWIEDZ