Granica w zerze

Wyznaczanie granic funkcji. Ciągłość w punkcie i ciągłość jednostajna na przedziale. Reguła de l'Hospitala.
41421356
Użytkownik
Użytkownik
Posty: 541
Rejestracja: 11 maja 2016, o 13:36
Płeć: Mężczyzna
Lokalizacja: Lublin
Podziękował: 497 razy
Pomógł: 5 razy

Granica w zerze

Post autor: 41421356 »

\(\displaystyle{ \lim_{x\to 0} \ \frac{\frac{1}{x}-\cot x}{x}}\)

Jakieś pomysły bez użycia pochodnych?
a4karo
Użytkownik
Użytkownik
Posty: 22206
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 38 razy
Pomógł: 3754 razy

Re: Granica w zerze

Post autor: a4karo »

Wsk `\tan x=x+x^3/3+o(x^4)`
41421356
Użytkownik
Użytkownik
Posty: 541
Rejestracja: 11 maja 2016, o 13:36
Płeć: Mężczyzna
Lokalizacja: Lublin
Podziękował: 497 razy
Pomógł: 5 razy

Re: Granica w zerze

Post autor: 41421356 »

Czyli bez rozwinięcia w szereg się nie obejdzie?
janusz47
Użytkownik
Użytkownik
Posty: 7917
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 30 razy
Pomógł: 1671 razy

Re: Granica w zerze

Post autor: janusz47 »

\(\displaystyle{ \cot(x) = \frac{1}{x}- \frac{1}{3}x + o(x^3). }\)
Awatar użytkownika
Janusz Tracz
Użytkownik
Użytkownik
Posty: 4065
Rejestracja: 13 sie 2016, o 15:01
Płeć: Mężczyzna
Lokalizacja: hrubielowo
Podziękował: 80 razy
Pomógł: 1392 razy

Re: Granica w zerze

Post autor: Janusz Tracz »

41421356 pisze: 23 kwie 2022, o 14:56 Jakieś pomysły bez użycia pochodnych?
@a4karo & janusz47 rozumiem, ze szkolne funkcje definiujecie jako magiczne szeregi wyciągnięte z kapelusza? Co do zadania to zauważ, że

\(\displaystyle{ \frac{\frac{1}{x}-\cot x}{x} = \left( \frac{\sin x-x}{x^3}+2 \frac{\sin^2 \frac{x}{2} }{x^2} \right) \cdot \frac{x}{\sin x} }\)
Nieoczywista jest tu zbieżność \(\displaystyle{ \left( \sin x-x\right)/x^3 }\). Jednak można zrobić to elementarnie (choć bardzo pomysłowo): .
a4karo
Użytkownik
Użytkownik
Posty: 22206
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 38 razy
Pomógł: 3754 razy

Re: Granica w zerze

Post autor: a4karo »

Obejdzie się: możesz zapisać wyrażenie w postaci
\(\displaystyle{ \frac{\sin x-x\cos x}{x^2\sin x}}\)
skorzystać z oszacowań
\(\displaystyle{ x-\frac{x^3}{3!}<\sin x<x-\frac{x^3}{3!}+\frac{x^5}{5!}}\)
\(\displaystyle{ 1-\frac{x^2}{2}<\cos x<1-\frac{x^2}{2}+\frac{x^4}{4!}}\)
i skorzystać z twierdzenia o trzech funkcjach
janusz47
Użytkownik
Użytkownik
Posty: 7917
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 30 razy
Pomógł: 1671 razy

Re: Granica w zerze

Post autor: janusz47 »

Łatwiej jest rozwinąć w szereg Taylora - Maclaurina elementarną funkcję do dwóch składników, niż stosować karkołomne, nieczytelne przekształcenia i podawać przykłady na Stackexchange Math.
a4karo
Użytkownik
Użytkownik
Posty: 22206
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 38 razy
Pomógł: 3754 razy

Re: Granica w zerze

Post autor: a4karo »

Janusz Tracz pisze: 23 kwie 2022, o 17:31
41421356 pisze: 23 kwie 2022, o 14:56 Jakieś pomysły bez użycia pochodnych?
@a4karo & janusz47 rozumiem, ze szkolne funkcje definiujecie jako magiczne szeregi wyciągnięte z kapelusza? Co do zadania to zauważ, że

\(\displaystyle{ \frac{\frac{1}{x}-\cot x}{x} = \left( \frac{\sin x-x}{x^3}+2 \frac{\sin^2 \frac{x}{2} }{x^2} \right) \cdot \frac{x}{\sin x} }\)
Nieoczywista jest tu zbieżność \(\displaystyle{ \left( \sin x-x\right)/x^3 }\). Jednak można zrobić to elementarnie (choć bardzo pomysłowo): .
Zbieżność \(\displaystyle{ \left( \sin x-x\right)/x^3 }\) jest dużo bardziej oczywista niż wzorek, który napisałeś :D

Takie magiczne szacowania sinusa i kosinusa bez wprowadzania szeregu się u nas przerabiało w 2 kl. liceum. w temacie: fajne zabawy z całkami :mrgreen:

`\cos x<1`
całkujemy od `0` do `x`
`\sin x<x`
jeszcze raz
`1-\cos x<x^2/2`
i tak dalej i tak dalej
Awatar użytkownika
Janusz Tracz
Użytkownik
Użytkownik
Posty: 4065
Rejestracja: 13 sie 2016, o 15:01
Płeć: Mężczyzna
Lokalizacja: hrubielowo
Podziękował: 80 razy
Pomógł: 1392 razy

Re: Granica w zerze

Post autor: Janusz Tracz »

janusz47 pisze: 23 kwie 2022, o 17:40 Łatwiej jest rozwinąć w szereg Taylora - Maclaurina elementarną funkcję do dwóch składników...
Problem w tym, że to autor ustala zasady gry, a nie Ty. Jest napisane, że ma być bez pochodnych. Więc albo magicznie definiujesz \(\displaystyle{ \ctg}\) jako szereg wyciągnięty z kapelusza albo rozwijasz (tylko wtedy korzystasz z pochodnych). Autor nie pyta co jest łatwiej tylko jak to zrobić bez pochodnych.

A w cytowaniu rozwiązań z Mathematics Stack Exchange nie widzę nic złego. Szczególnie, gdy wnoszą coś do tematu.
a4karo pisze: 23 kwie 2022, o 17:47 w temacie: fajne zabawy z całkami
Uznałem, że jak umiem scałkować \(\displaystyle{ \sin}\) to z pochodną \(\displaystyle{ \cos}\) dam sobie rade.
41421356
Użytkownik
Użytkownik
Posty: 541
Rejestracja: 11 maja 2016, o 13:36
Płeć: Mężczyzna
Lokalizacja: Lublin
Podziękował: 497 razy
Pomógł: 5 razy

Re: Granica w zerze

Post autor: 41421356 »

janusz47 pisze: 23 kwie 2022, o 17:40 Łatwiej jest rozwinąć w szereg Taylora - Maclaurina elementarną funkcję do dwóch składników, niż stosować karkołomne, nieczytelne przekształcenia i podawać przykłady na Stackexchange Math.
Ciężko tłumaczyć to studentom, którzy nie mieli jeszcze pochodnych.
ODPOWIEDZ